Truck Company Operations Instructor Guide

Session Reference: 1-3

Topic: Ventilation

Level of Instruction:

Time Required: 90 Minutes

Materials:

References:

• Truck Company Fireground Operations, Second Edition, Chapters 4 and 5

• Essentials of Fire Fighting, Third Edition, Chapter 7

PREPARATION:

Motivation:

Objective (SPO): 1-3-1

The student will demonstrate a basic understanding of ventilation theory, ventilation decisions, methods of ventilation, and ventilation techniques.

Overview:

Ventilation

- Definition
- Basic principles
- Natural ventilation
- Forced ventilation
- Smoldering fires

SESSION 1-3

VENTILATION

- SPO 1-3-1 The student will demonstrate a basic understanding of ventilation theory, ventilation decisions, methods of ventilating, and ventilation techniques.
 1-3-1 Define ventilation and describe the importance of ventilation to the overall fire suppression activity.
 1-3-2 Describe convection currents and their effect on ventilation.
 1-3-3 Explain natural ventilation.
 1-3-4 Explain forced ventilation.
- 1-3-5 Describe the signs and special ventilating considerations related to smoldering fires.

I. Definition (1-3-1)

- A. Ventilation is the controlled removal of smoke, heat, and gases and the replacement with fresh air.
- B. Ventilation contributes directly to accomplishment of basic fire fighting objectives by
 - 1. Reducing danger to trapped occupants and extend time for rescue operations
 - 2. Increasing visibility thereby decreasing danger inherent in other fireground operations and increasing efficiency
 - 3. Permitting quicker and easier entry to allow search operations or to advance lines
 - 4. Minimizing time required to locate seat of fire
 - 5. Minimizing time required to find areas to which fire has spread
 - 6. Decreasing or stopping spread of fire
 - 7. Reducing chance of flashover or backdraft
- C. Results depend on size and type of occupancy involved, extent and location of fire, and whether fire is free burning or smoldering
- D. When properly performed, ventilation increases effectiveness of most operations
- E. Ventilation techniques require doing damage to building
- F. Small amount of ventilation damage results in larger reduction in fire damage
- G. Ventilation aids in saving lives

II. Basic Principles (1-3-2)

- A. Fire travel by convection presents greatest fire fighting problem
- B. Smoke moves vertically and horizontally mushrooming

- C. A separate fire may ignite from hot air and combustion products rising
- D. Accumulation of hot air and combustion products under roof must be allowed to escape
- E. Opening should be under hot air and combustion product accumulation
- F. Accumulation on fire floor should be relieved also
- G. General rule is open fire building so that all accumulations of heat and combustion products leave building by natural convection

III. Natural Ventilation (1-3-3)

A. Windows

- 1. When time permits, windows should be opened; avoid breaking glass, if possible
 - a. Double hung windows should be opened two-thirds down from the top and one-third up from the bottom
 - b. Open other types of windows as much as possible
 - Storm windows must also be opened or removed
 - Shades, blinds, drapes, curtains, and other window coverings must be moved away or removed

2. Effects of wind

- a. When wind is a factor, windows on leeward side should be opened first
- b. Windows on windward side should then be opened
- c. If windward side is opened first, wind will churn smoke and gas around in interior
- 3. Window and roof ventilation

- a. When roof or roof features must be opened for venting, windows on top floor should be opened
- b. If windows on several floors must be opened, begin at top and work down
- c. Opening windows from below first may cause fire and smoke spread

B. Natural roof openings

- In multi-story buildings, vertical shafts carry stairways, elevators, dumbwaiters, electric wiring, heating ducts, and plumbing and sewer pipes
- 2. Shafts extend full height of building
- 3. Convected heat, smoke, and gases will rise within and around shafts
- 4. If shafts are not vented at top, fire will travel horizontally
- 5. Pressure will force heat, smoke, and gases throughout upper part of building
- 6. Shafts are capped at roof with various closures

C. Skylights

- 1. Positioning of skylights can give idea of building layout
 - a. In office or apartment building, row of skylights most likely located over corridor
 - b. In shops or factories, line of skylights over work area
 - c. Often located over stairways, corridors, elevator shafts, air shafts, and bathrooms
 - d. Bathroom coverings may have louvered ends

- e. Area immediately below skylight usually boxed to separate cockloft or attic space
- f. Warning should be given to fire fighters below before removing skylights

2. Opening skylights

- a. Preferred method of opening skylight is to lift from opening or tip over
- b. Flashing joining skylight to roof must be cut or pried away
- c. For skylights mounting on foundations, flashing must be cut or pried
- d. Lay skylight upside down as warning for fire fighters
- e. If skylight cannot be lifted or tipped, glass can be cut
- f. Less damage done by peeling back metal striping and sliding out panes
- g. If not removable quickly, knock glass out
- h. More than one or two fire fighters may be required
- 3. Plastic skylights and roof panels
 - a. Mounted same as glass skylights
 - b. If skylight cannot be removed, frame should be cut where it meets plastic
 - Avoid stepping on panels placed in a roof and serving as simple skylights
 - d. Plastic panels can be pulled up after roof is cut or pried up along edge
- 4. Effects of wind keep backs or sides to wind
- 5. Opening below the skylight

- a. Smoke should flow freely once skylight is opened
- b. May be swinging transom or panel at ceiling line
- c. Be careful to avoid heat and smoke from opening
- d. Cockloft must be vented from opening in roof
- e. Roof scuttle can be used for venting roof if not boxed
- f. Boxed area below skylight can be opened for venting
- g. If fire is directly under roof, make opening as close over fire as safety allows
- D. Roof shuttles (hatches) placed in a roof to allow access to the roof from the interior
 - 1. Opening scuttles
 - a. If cover is not securely locked, can be pried
 - b. If not easily removable, cut off
 - 2. Opening below the scuttle
 - a. Might be boxed to separate from cockloft
 - b. Check to see if scuttle is open at ceiling level
 - c. Building and/or cockloft may be vented by scuttle
 - d. Ceiling closure must be removed
 - e. Enclosure below scuttle must be opened to vent cockloft
- E. Pre-fire inspection
 - 1. Every building has some natural openings

- 2. Only sure way to know which natural openings can be used in fire fighting is by making prefire inspections
- 3. Pre-fire inspections save time and effort on fireground

F. Cutting Through Roofs

- 1. At times, only way to properly ventilate is cut hole in roof
 - a. Roof made of boards can be cut with axe
 - b. Roof may of plywood should be cut with power saw
 - c. Care should be taken not to cut joists or other structural members
- 2. Single large hole is more effective than several small holes
 - a. One 4' X 8' hole has twice area of four 2' X 2' holes
 - b. All roof boards should be cut through before any pulled up
 - c. Keep back to wind when pulling boards
 - d. When all boards ripped up, make opening in ceiling below
- 3. Special care should be taken when fire is immediately below roof
 - a. Open roof as close as possible to seat of fire
 - b. If not, fire will be drawn across top of building to opening
 - c. Hot spots may develop on roof
 - d. If roof is flat, opening should be made at hot spot

- e. On gabled roof, opening should extend from hot spot to peak
- f. Draft can be increased by making an additional opening just above the eave line on side opposite original opening
- g. Care should be taken so that opening does not increase fire spread

IV. Forced Ventilation (1-3-4)

A. Smoke ejectors

- 1. Cannot be used as a substitute for natural venting techniques
 - Heat, smoke, and gases most effectively removed by natural convection through natural or forced openings
 - b. Crews should perform natural ventilation and carry out other necessary duties
 - Fans should not be used in partially or completely confined spaces in which there is fire
 - d. May be used in confined areas after fire has been knocked down

2. Fan placement

- a. Most effective when placed where they tend to increase natural air flow
- b. When fans are positioned in windows or doorways, all shades, drapes, blinds, curtains, and screens should be removed
- c. If possible, open area around fan should be closed to increase fan efficiency by directing air through opening and preventing smoke from re-entering
- d. Be careful not to exhaust smoke into congested areas or into heating and cooling intakes

3. Fans in tandem

- a. Can be especially effective when used in pairs
- b. Place one fan near an outside opening blowing smoke out and other inside room to blow smoke to first fan
- c. Fans can be used to exhaust smoke and draw in fresh air at same time
- d. Exhaust fan should be mounted high in vent opening
- e. Intake fan should be lower

B. Positive pressure blowers

1. Introduction

- a. Fresh air introduces to increase pressure
- b. Selective process of opening and closing doors and windows
- c. Initiated outside structure
- d. Has potential of moving fire and fire gases
- e. Generally speaking, initiated between fire fighters and fire or between fire and trapped victims

2. Advantages of positive pressure ventilation

- a. Can maintain primary and secondary egress routes
- b. Does not require explosion proof fans
- c. Can be initiated from exterior of building
- d. Effective on all structures when doors and windows maintained
- e. Does not require smoke and fire gases to pass through fan

- f. Quicker than negative ventilation
- g. Air velocity within building increased
- h. Works well in large areas

3. Fan placement

- Place fan far enough away from door to fill opening with cone of air
- b. Stacking fans increases volume greatly
- c. For oversized doors, place fans side by side or in tandem
- d. For single fan, place 6 to 10' from doorway
- e. For multiple fans, place 3 to 5' from doorway

4. Working with positive pressure

- a. Ventilation critical to overall operation
- b. Must identify location of fire
- Place pressure zone to support rescue or fire attack
- d. Take care not to destroy integrity of doors and windows

5. Special situations

- a. High rise buildings
- b. Heavier than air gases and below grade conditions
- c. Confined space
- d. Emergencies involving temperatures

C. Fog streams

1. Can be used to start venting immediately after fire has been knocked down

- 2. To be most effective, stream should be positioned so fog pattern covers most of window opening
- 3. Hold nozzle few feet inside window
- 4. Observe smoke movement to determine proper position of nozzle
- 5. Fog streams should not be used for venting if they damage
- a. Items removed for protection
- b. Outside of fire building or enter adjourning buildings
- c. Inside of room from which directed
- 6. They should not cause ice to form outside
- 7. Should be short term operation

NOTE: The instructor may want to discuss applying natural and forced ventilation to particular situations.

V. Smoldering Fires (1-3-5)

A. Indications

- 1. Much smoke visible, but no open fire can be seen or heard
- 2. Smoke rising rapidly from building, indicating that it is hot
- 3. Smoke leaving building in puffs or at intervals
- 4. Some smoke being drawn back into building around windows, doors, and eaves
- 5. Although no flames are showing, windows stained brown from intense heat
- Occasionally, one or more panes broken by heat

- 7. Small rim of fire can appear around edges of broken glass
- 8. Smoldering fire has sufficient heat and fuel to become free burning
- 9. Smoldering fire needs only oxygen to burst into flame
- 10. Fire can be smoldering in building of any size or type or in only one area of large structure

B. Backdraft

- Smoldering fire must be ventilated before it is attacked
- 2. Addition of oxygen to heat and fuel will lead to immediate ignition
- 3. Sudden ignition can take any form
 - Gases and heated combustibles simply burst into flame
 - b. Force of ignition might be enough to blow windows, doors, and fire fighters out of building
 - c. Could be explosion strong enough to cause structural damage

C. Venting

- 1. An opening must be made as high on the building as safely possible to release gases and allow them to move out of structure
- 2. Difference between free burning and smoldering fire is that venting must be done before entering structure in smoldering fire
- 3. Natural roof openings can be used for ventilation
- If roof venting seems particularly dangerous, knock out tops of highest windows with ladder or solid stream

Instructor Guide

Instructor Notes

- 5. Avoid approaching building directly to avoid violent explosion approach from oblique angle or parallel to building
- 6. Attack lines should be charged and ready for use during building ventilation
- 7. If there is a possibility of backdraft, apparatus should not be positioned in direct line of building
- 8. Once ventilated, fire will burn freely

SUMMARY:

Review:

- Ventilation
 Definition
 Basic principles
 Natural ventilation
 Forced ventilation
 Smoldering fires

Remotivation:				
Assignment:				
EVALUATION:	=========	=========	:=======	