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Pressure gauges are often the sole source  of data for monitoring  and 
troubleshooting  essential equipment such as pumps. But, 40% of gauges 
have failed or are close to it.* 

Without accurate measurements like suction and discharge pressures, you 
could be dealing with repeat equipment failures, costly repairs and downtime. 

The experts at WIKA Instrument,  LP can help you be more predictive with the 
right gauges. Learn how. Contact us at info@wika.com or 1-888-945-2872.

Shouldn’t your sole source of data 
be reliable?

*More than 250 WIKA Instrument Audits 
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Rosemount 3051S Pressure Transmitter
Design improvements enhance long-term stability and lengthen warranty

Emerson Process Management has improved the stability of the Rosemount 
3051S Pressure Transmitter to 15 years and lengthened the coverage of the limited war-
ranty to 15 years. Users can benefit from these improvements through extended calibration 
intervals and better measurement repeatability over time. The new 15-year long term stabil-
ity specification is the result of a three-year design effort to further optimize the Rosemount 
3051S SuperModule sensor platform. A new process isolating diaphragm design and shaping 
enhancements coupled with new ultra-high precision manufacturing equipment were key to 
extending the long-term stability of the Rosemount 3051S. 

As a result of the improved design, users can achieve 15+ years of process and measure-
ment repeatability over time under installed operating conditions, resulting in improved 
batch-to-batch quality and reduced process uncertainty. Calibration intervals can be 
extended to minimize time and costs spent on maintenance and troubleshooting.  An extended 15-year limited warranty 
also is available and is a testament to the overall quality and reliability of the Rosemount 3051S.  

Additional information on the Rosemount 3051S can be found at www.rosemount.com/3051S

Emerson Process Management •  800-999-9307 •  www.EmersonProcess.com
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Is Your Process Whispering To You?
Pressure transmitter noise can pinpoint process problems
By Roger K. Pihlaja, Emerson Process Management

Some smart pressure transmitters include built-
in diagnostics that can monitor and alarm problems 
occurring in the process rather than just within the 
instrument. The best known application of such ex-
ternal-problem diagnostics is detecting impulse-line 
plugging via differences in the subsonic noise patterns 
generated between plugged, partially plugged and 
clear lines. The technique has become well accepted 
in process automation.

Recent work by Emerson shows that great oppor-
tunity exists for spotting many more process problems 
via acoustic signatures using the latest fast-sampling 
pressure transmitters. We have evaluated noise phe-
nomena in a range of process equipment at customer 
sites, university R&D facilities and private laboratories 
to detect incipient and actual process problems or 
failures. Of particular interest is work in

1. Catalyst circulation in fluid catalytic crackers; 
2. Pulsation-induced measurement error; 
3. �Coated or plugged multiport pitot-tube (An-

nubar) flow meters;
4. �Coal-pulverizer fan wear (somewhat afield of 

chemical processes);
5. Distillation column flooding;
6. Furnace/boiler flame instability; and
7. Wet gas flow.
The first four have been proven and are being used 

in a few chemical plants and elsewhere.
For instance, an Exxon refinery relies on process 

noise detected by a fast-sampling pressure transmitter 
to quickly alarm the beginnings of stick-slip cata-
lyst flow in a fluid catalytic cracker. In the past, the 
automation system’s historian was about 30 minutes 

late at conventional regulatory sensor-sampling rates 
in noting the problem and alarming the tag. This 
resulted in shutdowns that cost up to $1 million/day 
in lost output for up to seven days, plus very expensive 
equipment repairs. More details on the application are 
at: www.emersonprocess.com/rosemount/document/
notes/00830-0200-4801.pdf.

The other three applications are in various stages 
of advanced development. Less far along is problem 
detection in aerated liquid flow, agitation, bubbler tank 
level, process leaks and pump/valve cavitation. Theo-
retical applications include steam trap failure, turbine 
blade wear and coating, and wet steam flow.

Today we know what factors must be present for a 
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Figure 1. This block diagram shows key elements of a 4–20-mA HART device.

Smart Fast-Sampling Pressure Transmitter

http://www.emersonprocess.com/rosemount/document/notes/00830-0200-4801.pdf
http://www.emersonprocess.com/rosemount/document/notes/00830-0200-4801.pdf


reasonable chance of success in both detection and ap-
plication of process noise to reveal and control process 
problems.

KEY COMPONENT

Vital to detecting problems or failures in process equip-
ment are HART 4–20-mA and Foundation Fieldbus 
pressure transmitters having fast-sampled (22-Hz) sub-
sonic sensor readings (Figure 1). These signals are used 
two ways: (1) conversion to filtered process variable for 
regulatory control, and (2) conversion of noise hash into 
useful acoustic signatures within an on-board advanced 
diagnostics module based on statistical process control 
(SPC). Data provided by this module are trailing mean, 
trailing standard deviation (SD) and calculated coefficient 
of variation (Cv). These three values and the relation-
ships among them — often at particular sensor-reading 
frequencies — can expose incipient and actual problems 
before they otherwise would be noted.

The 22-Hz sampling rate is useful for evaluating 
about 80% of the noise frequencies commonly gener-
ated by the large and heavy equipment and relatively 
slow events found in processes. Unfortunately, per the 
Nyquist sampling theorem, frequencies from 0 to 11 Hz 
(22 Hz halved) are the only ones available for evalua-
tion. Above 11 Hz, frequency aliasing leads to garbled 
information.

HELPFUL NOISE

Table 1 lists sources of process noise found useful thus 
far. Of these, turbulence is most common. Such sources 
probably are self-evident, except perhaps for burner flame 
instability, which indicates incorrect air/fuel ratio or 
impending flame-out in furnaces and boilers.

Trying to identify the source or sources of noise at 
the beginning of a smart pressure transmitter problem-
sensing application project is helpful. However, rigorous 

analysis isn’t worth the time and effort. For example, 
noise reflected off internal surfaces can alternately 
reinforce or cancel itself out, depending upon conditions, 
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Turbulence
• Primary ΔP sensing elements
• Pipe fittings and valves

Mechanical Equipment
• Agitators
• Pumps and fans
• Other rotating equipment
• Various process equipment

Gas Entrainment

Chemical Reactions
• Flame stability

Phase Change
 • Subcooled nucleate boiling
• Steam hammer
• Cavitation
• Condensation

Phase Inversion
• Distillation column flooding
• Particulate solid bed fluidization
• Packed bed breakthrough

Flow Path Change
• Fouling or coating
• Flow channel swelling, shrinking or blocking
• Sudden expansion or contraction of flow channel
• Valve throttling
• Leakage
• Water hammer

Sources of tranmitter noise



thereby confusing analyses. Also, the more 
viscous a fluid is, the more it absorbs sound, 
which makes transmitter or testing equip-
ment placement a guessing game.

It’s best to attempt to identify gener-
ally expected trends of what the signal source is doing 
at any one time versus what the process is doing then 
or might do later. Detecting an incipient problem 
or failure is the ultimate goal. Thinking ahead helps 
speed the development of a testable hypothesis that can 
be instrumented-up and trended during normal and 
abnormal operations. It’s all quite empirical.

Three signal phenomena deserve particular attention.
Most obvious is a signal that gets stronger or 

weaker because of an abnormal situation. Impulse line 
plugging and distillation column flooding (discussed 
later) fall into this category. The faster the change oc-
curs, the more positive the detection.

Second is where signal strength fluctuates more (or 
less) during abnormal conditions. Changes in mean 
and SD make those occurrences stand out graphically.

Less obvious is where the diagnostic signal is 
simply background process noise, such as from a pump 
or blower, and of no value of itself. Process-problem 
detection occurs when this signal, as it passes through 
a piece of process equipment, is attenuated or amplified 
during an abnormal situation. Noteworthy examples 
include: fouling in a heat exchanger and water absorp-
tion in a molecular sieve dryer (a swelling sieve changes 
the flow channel, which muffles the background noise).

BEST PRACTICES

In addition to trying to identify the source or sources 
of process-generated noise, an engineer should evalu-
ate the physics of the noise through statistical ma-
nipulation to help develop a testable hypothesis.

For instance, in a fluid flow situation it’s useful to 
know what the physics of the fluid are (its Reynolds 

Number (Re), viscosity, density, etc.), and their impact 
on noise creation, propagation and suppression — and 
therefore on transmitter positioning. The same can be 
said about the effects — good or bad — of orifice plates, 
venturis, valves and other substantial noise generators.

As a statistical example, a higher flow rate equals 
higher Re, equals higher turbulence, equals higher SD. 
Frequently, the SD increases and decreases quite linearly 
with flow rate. Dividing the SD by the mean (which 
gives the Cv), in effect, filters the SD by providing a 
Cv trend curve that stays relatively level compared to a 
rising and falling SD trend (Figure 2). Under abnormal 
conditions, the typically abrupt change in the Cv trend 
is often the most easily detected and alarmed.
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Figure 2. The Cv trace often provides a better basis for alarming against abnormal situations.

Standard Deviation Data

RELATED CONTENT ON CHEMICALPROCESSING.COM
“Technology Targets Towers”, www.ChemicalProcessing.com/articles/2009/075/
“Diagnostics Dig Deeper”, www.ChemicalProcessing.com/articles/2007/129/
“Plants Smarten Up”, www.ChemicalProcessing.com/articles/2006/077/

http://www.chemicalprocessing.com/articles/2009/075/
http://www.chemicalprocessing.com/articles/2007/129/
http://www.chemicalprocessing.com/articles/2006/077/


The transmitter, of course, should be located close 
to the expected diagnostic signal source and far from 
interfering signal sources. Its impulse lines should be 
short and purged often. Once the transmitter is in 
service, it’s important to check whether new or inter-
mittently operating process equipment generate noise 
in the 0–11 Hz range. If so, the transmitter may need 
retuning for proper operation.

Many more suggestions, tips, do’s and don’ts, and 
the like gained from practical experience exist — more 
than can be covered in a short article.

COLUMN FLOODING

Let’s now look at some of the thought processes in 
recent work to spot distillation column flooding.

A smart ΔP transmitter used to monitor and 
control upward vapor flow in the rectification section 
of a packed distillation column also can serve to detect 
and alarm, via its noise signature, incipient flooding 
in that section (Figure 3). The diagnostic technique 
was developed and proven on a pilot-plant column of 
the Separations Research Program at the University of 
Texas at Austin. (See: “Technology Targets Towers,” 
www.ChemicalProcessing.com/articles/2009/075/) It 
hasn’t yet been applied to a full-size tower.

When operating normally in the section’s continu-
ous phase, droplets of distilled product fall through the 
packing while vapor flows upward. Increasing vapor flow 
creates an aerodynamic drag on the droplets. If drag be-
comes excessive, the drops can’t fall and flooding begins.

Eventually a complete phase inversion occurs; the 
void space is flooded entirely with a combination of 
liquid and entrained vapor bubbles being forced up 
through the liquid. In due course the transmitter’s 
regulatory function would sense a substantial increase 
in ΔP due to flooding throughout and trigger an alarm 
— but much too late.

The transmitter’s diagnostics are configured to 
detect a change in the emitted noise pattern from the 
flooded packing caused by the sound of the bubbles 
randomly nucleating, growing and breaking — not 
unlike the noise of a carbonated drink.

Figure 4 shows a SD curve of the transmitter’s 
bubble noise signal, modified by an SPC differencing 
filter, that indicates a relatively sharp increase before 
settling at a higher level. The one-minute trailing trace 
is the most graphic indication of the beginning of 
flooding and the ideal parameter to alarm.

A power spectral density analysis can refine the 
sensing technique and check possible interference with 
the transmitter’s regulatory function. Figure 5 shows 
bubble noise during normal and flooded conditions. 
Note that from 4 to 11 Hz the normal trace runs as 
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Figure 3. Smart pressure transmitter can quickly detect flooding 
in rectification section.

Incipient Flooding

http://www.ChemicalProcessing.com/articles/2009/075/
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much as 10 db quieter than the flooded one, making 
that range best for flooding detection. Also note that 
the two traces are quite flat and unspiked, indicating 
they are “weak white noise,” i.e., noise that minimally 
affects the accuracy, reliability and repeatability of the 
regulatory signal.

LISTEN TO YOUR PROCESS

Smart fast-sampling pressure transmitters can break 
apart what appears to be random process noise. 
What’s discovered within that noise can identify 

process problems. While I highlighted early detection 
of distillation column flooding, a variety of poten-
tial applications exist. Each differs in its own way. 
Additional statistical analysis methods can manipu-
late process signals to tease out otherwise unknown 
phenomena and also to establish trailing-mean learn/
monitor periods to give the most consistent results.  

ROGER K. PIHLAJA is principal engineer — process diagnostics 

for Rosemount, Emerson Process Management, Chanhassen, MN. 

E-mail him at Roger.Pihlaja@Emerson.com.

Figure 4. SD curve response at 11:45 indicates start of flooding.

 Figure 5. Biggest difference between flooding and normal noise occurs at 4–11 Hz.

Power Spectral Density 

Power Spectral Density Analysis
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Think Straight About Orifice Plates
Insufficient flow conditioning often undermines measurement accuracy

By Andrew Sloley, Contributing Editor

Plants frequently rely on differential 
pressure created by an obstruction in a line 
to measure flow. Accuracy depends upon two 
factors: the correctness of the differential pressure 
measurement obtained via taps upstream and 
downstream, and the calculation for turning that 
measurement into a flow rate.

The obstruction placed in the line most often is 
an orifice plate — a flat plate with a machined ori-
fice. (For more on orifice plates, see: “Remember the 
Old Reliable Orifice Plate,” www.ChemicalProcess-
ing.com/articles/2006/132/; for other differential-
pressure flow metering options, see: “Look Beyond 
Orifice Plates,” www.ChemicalProcessing.com/
articles/2008/253/.) Orifice plates are cheap and 
reliable. Moreover, orifice plates manufactured to 
specific dimensions and tolerances generate known 
pressure drops for a given flow rate. The Internation-
al Standards Organization (ISO) has summarized 

the dimensional criteria; all reputable orifice-plate 
manufacturers meet these standards.

ISO standards also cover installation require-
ments. Proper installation plays a crucial role in 
achieving accurate orifice-plate measurements. 
The major criteria include a stable flow pattern, a 
fluid-filled pipe and an unobstructed flow path (no 
blockages). If these criteria are met, flow meter cal-
culations can be based on the physical dimensions of 
the system; no in-place measurement or calibration 
is required. 

Let’s look in detail at the first requirement, a 
stable flow pattern. An oft-repeated rule of thumb 
states that a length of straight-run pipe equal to 10–15 
piping diameters creates a sufficiently stable flow pat-
tern. How does this compare to the ISO standards?

The ISO standards include multiple upstream pip-
ing configurations — from fully open full-bore valves 
upstream and downstream to multiple right-angle 

Upstream Configuration  value

    <0.32 0.45 0.55 0.63 0.70 0.77 0.84

Fully open, full-bore valve 12 12 13 16 20 27 38

Two right-angle bends in same plane, Two or three 
bends at right angles with straightening vanes 15 18 22 28 36 46 57

Two or three bends at right angles, Flow branch 35 38 44 52 63 76 89

Fully open globe valve 18 20 23 27 32 40 49

Single right-angle bend 10 13 16 22 29 44 56

Table 1. Required number of pipe diameters in upstream straight run generally decreases with  value.

ISO INSTALLATION REQUIREMENTS

http://www.ChemicalProcessing.com/articles/2006/132/
http://www.ChemicalProcessing.com/articles/2008/253/
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turns to tee-branch connections. 
They also detail for multiple values 
of  — the orifice diameter/pipe 
diameter, in consistent units — 
the length of straight-run piping 
required (Table 1). In general, the 
lower the , the shorter the pipe run necessary. During 
piping design, the final  ratio is unknown. So, many 
engineering standards attempt to reduce overall cost by 
specifying a maximum  of 0.55 to 0.63.

The best cases are fully open full-bore valves 
with a straight run upstream of them, and a single 
right-angle bend upstream. The required piping 
runs for a 0.55  are 13 diameters for the full-bore 
valves and 16 diameters for the single right-angle 
bend. Every other configuration is worse — in 
some cases, much worse. Higher  values increase 
upstream requirements.

For two 90° bends in series, an orifice with a 0.55 
 requires 44 diameters of upstream piping to meet 
ISO standards. Even with properly installed straight-
ening vanes, this layout needs 22 diameters. A  of 
0.84 raises the requirement to 40+ diameters for all 
types of installations.

What this all means is that if your plant needs 
maximum accuracy, use lots of pipe run upstream 
of orifice plates. In some cases, 90 diameters are 
necessary. Additionally, if you’re having flow meter 
problems, check the installation. I’ve observed many 
orifice meters inside process units that don’t meet 
ISO standards. The 10–15-diameters rule only ap-
plies to a “best case” — i.e., everything else is done 
correctly and a low- orifice plate is installed. Most 
industrial installations require 20+ diameters. Using 
straightening vanes can help, but doesn’t completely 
solve the problem. The toughest installations are 
downstream of flow branches and where multiple 
elbows in series are at right angles to each other. To 
paraphrase a quote from pump installation guide-
lines, the only thing worse than one elbow upstream 
of a flow orifice is two elbows.

While a plant may start with low- orifice plates, 
as hydraulics become tighter it may put in new plates 
with lower pressure drops (and higher  values). 
Installing a short run of larger diameter pipe doesn’t 
solve the problem (Figure 1). The upstream expan-
sion creates a flow pattern with unknown effect on 
the orifice meter.

If the piping configuration doesn’t meet ISO 
standards, accuracy will suffer. For monitoring 
unit trends, reduced accuracy may be an accept-
able tradeoff for a cheaper meter installation. For 
high and reliable accuracy, always follow the ISO 
requirements. 

andrew sloley, Contributing Editor

ASloley@putman.net

CAS

3”x4” 4”x3”

FIC

XXX

FE
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XXX

Figure 1. Installing a short section of larger diameter pipe 
would create flow pattern with unknown impact on meter.

BAD IDEA

RELATED CONTENT ON CHEMICALPROCESSING.COM
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“Look Beyond Orifice Plates,” www.ChemicalProcessing.com/articles/2008/253/
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Consider Robust Inferential Sensors
Easier-to-develop-and-maintain sensors offer significant benefits for chemical processes

By Arthur Kordon, Kordon Consulting, LLC; and Leo Chiang, Zdravko Stefanov and Ivan Castillo, The Dow Chemical Company

Some critical parameters (composition, mo-
lecular distribution, density, viscosity, etc.) in chemical 
processes are not measured online. Instead, their values 
are determined either by laboratory samples or offline 
analysis. However, for process monitoring and qual-
ity supervision, the very slow response time of these 
relatively low frequency measurements (taken every 
several hours or even days) may cause loss of production 
due to poor quality control. In situations with potential 
for alarm showers, lack of critical parameters available 
online could result in a significant negative impact 
and eventually could lead to shutdowns. One of the 
approaches to address this issue is through development 
and installation of expensive hardware online analyzers. 
Another solution is to use soft or inferential sensors that 
deduce the critical parameters from easy-to-measure 
variables such as temperatures, pressures and flows. 

Reference 1 describes the current state of the art of 
inferential sensors. At a very general level, the sensors 
fall into two different classes — model-driven and 
data-driven. Model-driven sensors are developed based 
on first-principles models, which can be costly and 
require deep process knowledge. Data-driven sensors 
are developed based on empirical models derived from 
plant data. The majority of applied inferential sensors 
are data-driven.

The data-driven sensor model-development process 
consists of data gathering, preprocessing, variable 
selection, model structure design (nonlinear or linear), 
and model validation. Once the inferential sensor is 
deployed, model maintenance mechanisms such as diag-

nosis of under-prediction are desirable for quickly tuning 
the model’s parameters or troubleshooting the process. 

Several empirical modeling methods are used to 
extract relevant information from historical manufac-
turing data to develop inferential sensors. In the case 
of linear relationships between process and quality 
variables, multivariate statistical regression models 
such as partial least squares (PLS) can serve to find 
these empirical correlations. When dealing with 
high-dimensional data, a successful variable-selection 
procedure will improve the interpretation and identifi-
cation of the underlying process conditions. Reference 
2 provides an extensive review of PLS-based variable-
selection methods that are effective in an industrial 
context. An important advantage of PLS is its capabil-
ity of providing diagnosis where changes in operating 
conditions and faulty situations can be detected and 
utilized during the deployment stage. 

Since the early 1990s, a more generic approach 
that captures nonlinear relationships based on artificial 
neural networks has been used. Neural networks are 
black-box empirical models designed by mimicking the 
human nervous system. They have several features that 
are very appropriate for inferential sensors’ design, such 
as universal approximation, models are developed by 
learning from data and can be implemented online.

Due to these features, many applied inferential 
sensors are based on neural networks. However, 
neural networks have some limitations, such as low 
performance outside the ranges of process inputs 
used for model development. Model development 
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and maintenance require specialized training — and 
frequent retraining, which significantly increases the 
maintenance cost. In addition, model deployment 
demands specialized run-time licenses. 

An alternative technology — the robust inferential 
sensor — has been under development at The Dow 
Chemical Company since 1997. It is based on genetic 
programming and resolves most of the issues of neural-
network-based inferential sensors. The robust inferential 
sensors are in the form of explicit algebraic equations au-
tomatically generated with an optimal tradeoff between 
accurate predictions and simple expressions. As a result, 
they offer more robust performance in the face of minor 
process changes. Dow facilities, such as the Pittsburg, 
Calif., plant pictured above, are gaining significant 
benefits from robust inferential sensors. Reference 3 
gives a detailed description of the technology. That paper 
is based mostly on the experience of applying robust 
inferential sensors at Dow.

IMPORTANT ADVANTAGES

Robust inferential sensors provide both economic and 
technical benefits.

From an economic standpoint:
• �Inferential sensors allow tighter control of the 

most critical parameters for final product quality 
and, as a result, enable significant improvement 
in product consistency.

• �Online estimates of critical parameters reduce pro-
cess upsets through early detection of problems.

• �The sensors improve working conditions by de-
creasing or eliminating laboratory measurements 
in a dangerous environment.

• �Very often such sensors provide optimum eco-
nomics. Their development and maintenance cost 
is much lower than that of first-principles models 
and less than the cost of buying and maintaining 
hardware sensors.

• �Inferential sensors can be used not only for esti-
mating parameters but also for running “what-
if” scenarios in production planning.

In addition, compared to competitive inferential 
sensors based on other data-driven methods such as 
neural networks or multivariate statistical regression, 
robust inferential sensors provide a variety of technical 
advantages:

Better prediction outside the model development 
range. A key issue for neural networks is that they 
cannot extrapolate outside the range of the data from 
which they have been trained. Robust inferential 
sensors with the optimal complexity of their models 
resolve this problem. In principle, simple models and 
smooth functions generalize better than complex 
highly nonlinear models. A second-order polynomial 
generalizes better than a 15th-order polynomial, 
which usually captures noise instead of a functional 
relationship. Based on several implemented cases, 
selecting models with proper complexity and smooth-
ness can enable reliable performance at 20–25% 
outside the model development range [3]. 

Non-black-box models. Most production engineers 
dislike black boxes and are very reluctant to imple-
ment them for process monitoring and control. This 
is one of the reasons why neural-network inferential 
sensors have not been accepted on a mass scale. Ro-
bust inferential sensors are based on explicit algebraic 
equations, which are more acceptable to users in 
manufacturing.

Predictions based on an ensemble of models. It often 
is preferable to develop an inferential sensor that does 
not rely on a single model but instead on an ensemble 
of models, with the average of the various models used 
as the final prediction. One advantage of using an 
ensemble sensor is that the standard deviation of the 
different models in the ensemble can serve as a model 
disagreement measure. Another advantage is that the 
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ensemble enables redundancy. Because inferential sen-
sors mainly are used in processing conditions, frequent-
ly one or more of the instruments measuring the input 
variables may fail. If the ensemble consists of models 
with different input variables, another model available 
in the ensemble still can predict. 

Greater suitability for process control and optimiza-
tion. Equation-based empirical models can be opti-
mized explicitly and their responses and sensitivities to 
the inputs can be obtained by applying mathematical 
operators over the equations. This analytical predict-
ability means that inferential sensors pose less risk than 
black-box-based models for closed-loop control. 

APPLICATION AREAS

Industry rapidly realized the economic and technical 
benefits of inferential sensors. From the early 1990s on, 
vendors and articles in the literature have reported a 
spectacular record of successful applications.

Environmental emission monitoring epitomizes the 
role inferential sensors can play. Traditionally, analytical 
instruments with high maintenance costs perform such 
monitoring. The inferential sensor alternative, imple-
mented as a classical neural network, is much cheaper 
and provides accuracy acceptable for federal, state and 
local regulations in the United States and the European 
Union. Process variables enable inferring the level of 
NOx emissions in burners, heaters, incinerators, etc.

One of the first popular applications of inferential 
sensors was for estimating product composition in 
distillation columns. However, the most widespread 
implementation in the chemical industry is for predict-
ing polymer quality. Several polymer quality param-
eters, such as melt index, polymerization rate and con-
version, are deduced from reactor temperature, jacket 
inlet and outlet temperatures, and the coolant flow rate 
through the jacket. Of special interest is the nonlinear 
controller developed by Rockwell Automation, called 

Process Perfecter, that optimizes the transition between 
different polymer products.

Using inferential sensors for troubleshooting and 
closed-loop control has become a growing trend in the 
chemical industry. Today, to cope with rapid changes in 
demand for particular products, many plants strive for 
greater flexibility to operate at different production rates 
and grades. This brings new problems (e.g., increases in 
maintenance costs, unplanned shutdowns and final prod-
uct quality deviations) — ones that inferential sensors can 
solve. For instance, Dow AgroSciences used a soft sensor 
to rid a herbicide product of an undesirable component, 
which had started appearing recently but was not pres-
ent in previous production lots. The soft sensor helped 
identify the main variables that can predict this undesir-
able component and then can drill down to the root cause 
to eliminate it. Furthermore, operating in closed-loop 
control allows plants to be more flexible. However, the 
sampling rate used for analytical measurements is not fast 
enough for most control implementations — inferential 
sensors are the answer.

Such sensors fill the growing need in industry 
for sophisticated nonlinear models of process quality 
parameters. A number of well-established vendors, such 
as Rockwell Automation, Aspen Technology, Siemens 
and Honeywell, already have implemented thousands 
of inferential sensors in a wide variety of industries. The 
benefit from improved quality and reduced process up-
sets is estimated in the hundreds of millions of dollars 
but the potential market is much bigger.

SUCCESS STORIES

Let’s now look at two examples of their successful ap-
plication at Dow.

Distillation tower control. Obtaining an accurate 
and fast prediction of a process quality variable (in 
this case, propylene concentration) can enable better 
control of a distillation column. The current analyti-
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cal technique allows measurement of propylene every 
10 minutes, which is not sufficient for control pur-
poses. So, Dow turned to a robust inferential sensor 
that provides a prediction of propylene concentration 
every minute.

An ensemble of equation-based models has been 
derived on a genetic programming toolbox developed 
internally at Dow. The key criterion for model selec-
tion was an optimal balance between performance 
and low complexity. Satisfying the requirement for 
robustness to measurement faults favors models with 
different inputs. This led to the selection of the fol-
lowing three nonlinear models: 

(1)

(2)

(3)

 
where f is the predicted propylene concentration 
from each model and the xs are the corresponding 
candidate inputs, such as temperatures, pressures 
and flows. The models are simple and interpretable 
by process engineers. The different model inputs 
increase the robustness of the estimation scheme 
in case of possible input sensor failure. The model 
disagreement indicator is the standard deviation of 
the three models and a critical limit was defined to 
quantify the effect. 

NOx emissions monitoring. Another successful 
application is for NOx emission monitoring of two 
gas turbines, GT1 and GT2. The turbines operate 
on variety of fuels, including hydrogen and offgas. 
In 2004, using the genetic programming toolbox, 
Dow specialists developed robust inferential sensors 

for both turbines. Figures 1 and 2 illustrate the 
performance of the initial model for GT1. The initial 
models identified for GT1 and GT2 were:

	 (4)

 	 (5)

where the inputs are process variables, such as steam 
injection flow, megawatts and offgas mass flow. 

Analysis of the two models showed they behaved 
similarly in the window of operating conditions; so, 
the simpler formula (5) was fit for both turbines. This 
is another indication of the superiority of robust infer-
ential sensors, i.e., being analytical functions and the 
consequent possibility for simplification and superior 
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Figure 1. Predictions from model closely matched measured values. 

CALIBRATION SET FOR GT1 MODEL
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model-structure selection. 
The sensors have performed excellently. During 

ten years of operation, they passed relative accuracy 
test audits (RATAs) annually (the longest period al-
lowed by law) with the single exception of a 6-month 
schedule case. To achieve an annual schedule, a sensor 
must pass with better than 7.5% relative accuracy. 
Both turbines were mechanically rebuilt in 2008; the 
models still passed RATA with annual schedule with-
out the need to fit a different model structure.

LIMITATIONS

A robust inferential sensor is not a “silver bullet” for 
all problems. Like any technique, it has limitations. 
The most important of these are:

Requirement for high-quality process data. The qual-
ity of the inferential sensor’s modeling process strongly 
depends on the quality of the available data. Of special 
importance is providing suitably wide ranges for both 
input and output variables. The data should capture 
the full range of operating conditions — otherwise the 
empirical model is pushed into extrapolation mode, 
which always is unreliable with any technique. 

Limited value for significant process changes. The 
sensor only can handle minor process changes based 
on drifts in the operating conditions approximately 
20% outside the range of model development. If 
the process experiences significant changes, such as 
introduction of a new control system, unit redesign 
or new type of product, the inferential sensor will not 
perform adequately under the new conditions; a new 
model development process is recommended.

Need for periodic readjustment. Just as any hardware 
sensor demands periodic calibration, the robust infer-
ential sensor needs periodic readjustment. Usually, the 
procedure requires refitting the modeling parameters 

once a quarter or whenever predictions start deteriorat-
ing; this can be done without special training.

Necessity for some risk taking. Due to its novelty 
and complexity relative to hardware sensors, opting 
for the inferential sensor incurs added risk. However, 
we believe that significant reduction in risk level will 
occur with the increased number of applications and 
proven, long-term performance.

Non-traditional maintenance and support. The infer-
ential sensor’s maintenance and support require differ-
ent, more-specialized knowledge, including a skillset in 
the area of statistics and machine learning. Organizing 
effective support is one of the biggest challenges for 
mass-scale applications of this attractive technology. 
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THE FUTURE

To minimize inferential sensor maintenance cost and 
prevent future extrapolation, offline model develop-
ment should take advantage of the broadest possible 
ranges of the inputs and outputs from the available 
historical data. However, for different reasons, such as 
operating regime fluctuations due to different product 
demand, control system readjustment or equipment 
changes, at least 30% of applied inferential sensors are 
pushed to handle online operating conditions 20% 
outside of the offline model development range. This 
very high extrapolation level poses a challenge for any 
empirical modelling technique. Unfortunately, the 
high extrapolation level requires model redesign, in-
cluding derivation of an entirely new model structure. 

A possible solution for this key issue with current 
inferential sensors is to explore the capabilities of a 
new technology called evolving intelligent systems. It 
promises self-maintaining (autonomous) inferential 
sensors — i.e., ones that can adapt and evolve their 
structure as well as their parameters to follow the 
data pattern, to retrain and recalibrate. The gradual 
evolution of the model structure (fuzzy rules) means 
that a retraining of the sensor when required only will 
modify (add or replace) one or a few fuzzy rules. 

This new type of adaptive, self-calibrating and 
self-developing inferential sensor (called eSensor) 
has been tested on a range of case studies from real 
chemical processes [4]. The proposed eSensors can be 
trained “on the fly” starting either from scratch or after 
being primed with an initial rule-base. Also optionally, 
the eSensor can select online the most relevant and 
important input variables. The results with data from 
real chemical processes demonstrate that the evolving 
inferential sensor is very flexible. It develops its model 
structure and automatically adapts to sudden changes 
of operating condition. It does not need any pretrain-
ing and specific maintenance and, thus, significantly 

reduces lifecycle costs. In addition, the structure of the 
eSensor is transparent and interpretable as it is com-
posed of linguistic fuzzy rules. It has great potential for 
the next generation of low-cost inferential sensors.  
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