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Abstract

Engineers constantly demand innovation in modeling and simulation. This is driven by the need to simulate, for example, 
ever more sophisticated vehicle systems while minimizing development time and cost. The computer models necessary to 
generate these designs consume project time at an increasing rate, due largely to the limitations of existing simulation tools 
and the need to switch between tools to address multiple physical domains. While many existing simulation tools are based 
on a design metaphor that works well for control system design, engineers do not find them intuitive for physical modeling. 
Additionally, these tools often produce simulations that are too slow to model complex systems and, in some cases, lack the 
mathematical power to solve the governing equations.

These are some of the issues that have driven the development of MapleSim, a new physical modeling tool from Maplesoft. 
This article will explore the historical development of the early tools for simulation, and then expand on their design 
deficiencies. This is followed by a discussion of MapleSim, its unique design characteristics, and how it bypasses the 
limitations of current modeling and simulation technology.
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Introduction

Model-based development (MBD) involves developing 
high-fidelity models of engineering systems and then 
simulating them to understand how they will function 
under operating conditions, identifying potential problems, 
and developing solutions before going to the prototyping 
stage. Not only does this process give engineers a much 
better starting point when they begin creating prototypes, 
it can reduce the number of prototyping cycles. Fewer 
cycles reduce the time-to-production significantly, and save 
hundreds-of-thousands, perhaps even millions, of 
dollars in prototyping costs.

 

Figure 1. System development process

Over the last 15 years, MBD has evolved into a widely 
adopted process. The process is typically represented as a V 
(Figure 1). The right side of the V is characterized by rigor-
ous testing programs, often using models that have been 
produced in the Design and Development phases and run-
ning them in real time for Hardware-in-the-Loop (HIL) testing. 
Eventually, this process leads to the complete integration of 
the system that is ultimately released as part of the product.

The left side of the V encapsulates the use of simulation 
software for virtual prototyping, where many of the design is-
sues can be identified and addressed on desktop computers 
before the first prototype is built. While many of the software 
tools used for this process typically address numeric simula-
tion, they do not provide an environment that engineers find 
intuitive for physical modeling. This is because they are based 
on a signal-flow metaphor that has changed little from the 
days of the analog computer.  

Modeling software that bypasses the limitations of signal-
flow tools has emerged, but inherent restrictions in their 
technology and scope prevent them from being more widely 
adopted. These deficiencies include:

• Modeling functionality that may be limited to a single 		
	 physical domain

• Numerical solvers that cannot adequately address the 		
	 math behind increasingly complex systems

• No support for design documentation

These limitations, and a growing market demand, have 
motivated the development of MapleSim, a tool for physical 
modeling and control systems development. 

A Brief History of Modeling and Simulation

The Birth of Analog Computers

The earliest attempts at modeling physical systems were 
called “analogs”; that is, the use of mechanisms that behave 
the same or similarly as the system under study. These 
“analogous” mechanisms could be used to predict the 
behavior of a wide range of systems, such as Kelvin’s 1879 
tide predictor (Figure 2). This was essentially a set of pulleys, 
cranks, and ropes that emulated the motion of the seas, 
given certain properties about the location under study. 
The tide predictor was followed by more sophisticated 
mechanisms such as masses, springs, and dashpots that 
could be configured to model the dynamics of systems. 
Then came electronic components, such as inductors, ca-
pacitors, and resistors that could emulate the same 
behavior but at a lower cost and with better precision.

 

Figure 2. Kelvin’s tide predictor, 1879

Those components, along with the invention of the operational 
amplifier, gave rise to the analog computer in the 1940s. 
This provided scientists and engineers with a set of tools 
that allowed signals to be added, multiplied, and integrated 
– the three primary operations required to solve systems of 
differential equations.  
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The analog-computation method for solving ordinary differ-
ential equations (ODEs) involved rearranging the equations 
into integral form and simulating them with integration cir-
cuits with a combination of resistors, capacitors, inductors, 
and op-amps. By attaching a pen recorder or voltage gauge 
on an output line, it was possible to arrive at the predicted 
behavior of highly complex systems (Figure 3). For example, 
a network of operational amplifiers and linear passive 
components would be sufficient to simulate a mass-spring-
damper, while the concept of current and voltage would 
be used to simulate pressure drop and flow rate of water 
through a pipe.

 

Figure 3. Model development process for analog computers

While electronic analog computers were a major break-
through, they were expensive tools available only to a 
select few.

Signal-Flow Block Diagram Tools: A Legacy of the Ana-
log Computer

With the birth of the digital computer in the 1950s, a 
wide range of numeric solvers that emulated the analog 
computational approach were developed, but with a 
wider breadth of application. While expanding the scope 
of dynamic system simulation significantly, these were es-
sentially specialized programming languages that required 
highly specialized skills and digital computers that were still 
very costly.

Eventually, with the introduction of low-cost personal 
computers and graphical user interfaces, the 1980s saw 
the birth of the block-diagram environment that allowed 
a much larger number of engineers to develop dynamic 
system models on their own desktops.

The block-diagram environment was effectively a virtual 
analog computer on a digital computer with the latest 
numeric solvers (Figure 4). For the first time, engineers could 
produce models on their desktops by “wiring” together 
block components that represented the components their 

predecessors would have done with electrical components 
on real analog computers, but at a fraction of the cost.

 

Figure 4. Typical block-diagram GUI

Consequently, this revolutionized the way engineering 
simulations were performed and several tools of this nature 
are used extensively today. By far, the most popular of these 
is Simulink® from The MathWorks™, but there are also 
SystemBuild™ (National Instruments®), EASY5™ (MSC Soft-
ware®), and VisSim™ (Visual Solutions), among others.

Signal-flow tools were rapidly adopted because of their 
relatively low cost and highly intuitive user interface. Most 
engineers would have taken a controls course in their 
undergraduate studies and part of that course was to 
learn how to draw schematic block diagrams to represent 
dynamic systems and controllers. Hence, they were already 
familiar with some of the principles involved.

Limitations of the Signal-Flow Modeling Paradigm

No Support for Automated Plant Modeling

The signal-flow approach is a laborious process that has not 
changed in over 50 years:

1) The ODEs that describe the system dynamics must be		
derived prior to using the signal-flow tool, usually by hand 	
based on the engineer’s knowledge of the underlying 		
physics.

2) The ODEs are rearranged into a series of integral 
equations.

3) The  integral equations are entered in block diagram 
format on a computer. 

This is still a manual process that is time-consuming, costly, 
and requires intense human effort and a level of skill and 
knowledge that is not always available.  



Fixed Causality

The signal-flow paradigm forces model representations 
into a fixed causality, meaning that a component can only 
be represented one way. For example, consider a resistor 
whose characteristic equation is 

where V, I, and R are the voltage, current, and resistance, 
respectively. The voltage can only be calculated if the 
resistance and current are known. However, if the resistor 
is driven by a voltage source and we want to calculate the 
current, then a different representation is needed:

 

Therefore, to fully represent a component for use in different 
ways, all possible permutations of the governing equations 
are required. While this concept is simple for a resistor, the 
implications for complex components with multiple inputs 
and multiple outputs are far greater.

This makes the creation of generalized component libraries 
very difficult and forces engineers to choose the correct 
form of the equation, depending on the inputs, prior to 
building the model.
	
In essence, these legacy computer tools are causal in nature; 
each block has a distinct cause and effect. A signal flows 
into a block, the block performs a mathematical operation 
on that signal, and the result flows out of the other side. This 
is illustrated schematically in Figure 5.

Figure 5. The causal approach to block diagram programming

This approach is useful for modeling systems that are purely 
described by signals. These include control systems, digital 
filters, and other signal processing systems.  

It is not, however, intuitive to engineers when describing 
systems such as an automotive drive train, which consists of 
a network of interacting physical components. This requires 
a completely different modeling paradigm.

Algebraic Loops

Dynamic system models use one or more variables that 
vary with time;  these are called states and they essentially 
define the dynamics of the system. At any simulation step, 
signal-flow tools use the computed value of each state vari-
able from the previous step to compute the current value. 
Therefore, all state variables must have initial values so that 
the values in the first step can be calculated. 
	
However, there are many situations where the user can 
define a loop that does not have state. A very simple 
example is given in Figure 6.

 

Figure 6. A simple algebraic loop

Mathematically, this represents 

 

which implies that the output value is directly related to the 
input. Of course, there is a simple solution,

 

but standard signal-flow tools cannot reach this solution 
algebraically. (Moreover, algebraic loops are usually much 
more complex than this.)

Signal-flow tools have to resort to iterative numerical solvers 
to resolve algebraic loops. This process cycles through the 
loop until the input equals the output. This requires inter-
vention by the user to implement and puts considerable 
delay in the simulation because it must go through many 
iterations, calculating a solution at every time step.

Also, in some complex models, the solution can be very 
sensitive to the iterative solver and numeric tolerances 
used, and can easily become unstable.

The root of the difficulty is in the composition of systems. 
Even if subsystems are described by ODEs, interconnected 
systems may not be described by an ODE because intercon-
nections may create algebraic constraints. Mathematically, 
these types of systems are defining Differential Algebraic 
Equations (DAEs).
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Differential Algebraic Equations

DAEs are very common in engineering problems and are 
the basis for solving complex systems that are typically 
represented as networks of components: electrical circuits, 
hydraulics, pneumatics, and mechanical systems, to name 
a few. The nature of these representations introduces alge-
braic constraints, with the drawbacks illustrated previously.

Consequently, tools that use physical components (and 
not causal signal-flow blocks) to model the system have 
emerged. These tools usually feature a DAE solver, but 
they tend to be domain-specific. For example, several very 
popular electric circuit modeling tools have emerged based 
on the SPICE representation. These tools feature highly 
specialized DAE solvers.

The need for a more generalized approach to modeling 
networked physical components has led to several, often 
competing, approaches based on graph theory. Two major 
approaches are Bond Graphs and Linear Graphs. Each has 
its strengths and weaknesses, but emerging products typi-
cally adopt either one or the other.

Probably the most difficult domain for which to provide 
a generalized solver is in multibody mechanical systems. 
Several approaches have emerged, including Newton’s 
equations, Lagrange’s equations, Kane’s method, and Blajer’s 
projection method. The common theme is that they all use 
graph-theoretic methods for defining the system topology 
and produce DAEs to represent the system mathematically.

Simplistically, DAEs are sets of ODEs that must also satisfy 
algebraic equations that have been introduced through the 
addition of physical constraints in the system. For example, 
a simple RC circuit can be modeled with an ODE, but the 
addition of a parallel capacitance introduces an algebraic 
constraint that must be satisfied before the ODE can be 
solved. 

Further constraints add complexity to the DAE representation. 
Depending on the nature of the constraint, complexity is 
indicated by an increase in the index of the DAE. The index 
is a count of the number of times the DAE needs to be 
differentiated in order to reduce the problem to an ODE, 
at which point it can be solved using standard differential 
equation solvers.

Differentiation, however, magnifies numeric errors, and 
therefore multiple differentiations will quickly render 
solutions unusable unless techniques are used to reduce 
the errors. Current index reduction techniques attempt to 
reduce the errors, but they are generally only useful for up 
to index 3. This is very limiting, since a generalized approach 
to physical modeling can easily produce DAEs of index 3 or 
greater. 

For example, even a simple pendulum resolves to an index 
3 problem if absolute Cartesian coordinates are used. If 
the angular position of the pendulum is selected as the 
generalized coordinate, the index is decreased to 0; that is, 
an ODE.  This is illustrated in Figure 7.

MapleSim Design Features

Modeling at the Physical Component Level

MapleSim allows engineers to use both causal and acausal 
modeling paradigms. With acausal modeling, each block is a 
discrete physical component, such as a resistor or a 
mechanical joint. Each block contains information about 
which physical laws it must obey, and two connected 
components exchange information about which physical 
quantities (such as energy, current, torque, heat, and mass 
flow, etc.) must be conserved. Figure 8 gives a schematic of 
the process. (This should be compared to the corresponding 
causal diagram in Figure 5.)

MapleSim provides a broad range of acausal physical 
components across several physical domains; the equations 
that define their behavior do not have to be derived or 
entered manually. Engineers can also create their own 
components; these are generated from the differential 
equations, algebraic expressions, or transfer functions that 
define the dynamics of the component.

Figure 8. The acausal approach to block diagram programming
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Figure 7.  Importance of coordinate selection when modeling 
a pendulum



Acausal modeling better represents how physical components 
interact; this has two important corollaries:

•	 MapleSim block diagrams bear a far closer visual resem-		
	 blance to the real system than models created by tools 		
	 that use the causal, or signal-flow, approach. This is empha-	
	 sized in Figure 9, which compares the causal and acausal 	
	 approach to modeling a double mass-spring-damper.

•	 MapleSim is easier to use and features a shorter learning 
	 curve than signal-flow tools. This is because its use is not 	
	 predicated on the ability to derive system equations, but 	
	 on the inherent talent of engineers to visualize how 
	 physical components connect and interact in real 
	 systems.

Figure 9. A comparison of the causal and acausal approach to 
physical modeling

 

Hybrid Physical and Signal-Flow Modeling
MapleSim allows both modeling at the physical component 
and signal-flow level within the same model. This enables both 
the plant model and the control system to be prototyped with 
the modeling approach that suits each task best.

An example of a hybrid system is given in Figure 10. It is a 
model of a DC motor with an associated control system. 
Note that both electrical and mechanical components are 
integrated in the same model.

Figure 10. Mixed signal-flow blocks and multi-domain physical 
components

Multi-Domain Modeling

Many physical modeling tools (such as those based on SPICE) 
are dedicated to a single domain. This is highly restrictive 
because engineers often need to model the subtle effects 
that one domain has on another. For example, given the 
appropriate set of operating conditions, there is a high cor-
relation between the variation of the voltage across a motor 
and the vibration of an attached mechanical arm. That critical 
relationship would be far more difficult to discover (and to 
correct, if needed) if the electrical motor and the mechanical 
system were simulated in separate systems.

MapleSim is naturally multi-domain, and contains components 
from rotational and translational mechanics; analog, digital, 
and multiphase electric circuits; multibody mechanics; and 
thermodynamics. It also has standard continuous and 
discrete functionality.

MapleSim model  

Traditional model

System diagram

“One of the most exciting aspects of the MapleSim project is the opportunity to work on the modeling process from the beginning 
where the system is specified by high level description in the form of a component diagram, to a set of mathematical equations 
representing the model of the system, and finally to the simulation results. Each stage of the process presents a different set of 
challenges. From the translation of the graphical representation to the mathematical equations, the challenge is in the generation 
of equations. From equations to simulation, the challenge is in the manipulation of equations, as well as in the simplification of 
the model itself. And, of course, simulation is just one of the features offered by MapleSim. The integration of MapleSim and Maple 
provides a natural extension that allows users to perform advanced analysis on their MapleSim system model and to create high 
impact technical documentation. This makes MapleSim a very powerful, and yet flexible, integrated tool for modeling, simulation, 
and analysis of everyday physical dynamic systems.”
Dr. Gilbert Lai 
Lead Developer, Simulation Engine Library



MapleSim will not allow connections where they are not 
physically meaningful; an inductor, for example, cannot be 
coupled directly with a rotational inertia component.

A simple MapleSim multi-domain model is given in Figure 11, 
in which the resistor in a DC motor produces heat that varies 
with the current passing through it. The heat drains into a 
heat sink whose temperature varies with the heat produced 
by the resistor. This model combines three physical domains: 
electrical, 1-D mechanical rotational, and thermal.

Figure 11. A simple multi-domain model

Design Documentation and Model Analysis

MapleSim is supported by Maple’s computational Engine.
Maple is a software tool that helps technical professionals 
do math on a computer. It has a broad range of numeric and 
symbolic math functions, together with tools for visualization 
and deployment of solutions. A Maple worksheet is both an 
executable statement and documentation of the problem 
domain; ideas and assumptions can be recorded in the same 
environment as the math and algorithms.  

A diagram of Maple features and how they map onto the 
engineering problem solving process is given in Figure 12, 
while Figure 13 shows an example of a Maple document.

 Figure 12. Maple and the engineering problem solving process

Maple provides the symbolic and numeric routines that 
MapleSim uses to simplify and solve system models. These 
algorithms are the result of over 25 years of continual 
investment in research and design.

Maple worksheets can also be used to analyze and document 
MapleSim models. Through an interactive link, a Maple 
worksheet can be used to extract, view, and manipulate the 
symbolic equations that are created by a MapleSim model
(see Figure 13).

Worksheet templates are provided for plotting Bode and root-
locus diagrams, optimization, generating C code, and creating 
custom components. In particular, these templates can be 
used to find the controller gains that minimize rise time and 
attenuate overshoot, and create custom components from 
algebraic expressions, differential equations, and transfer 
functions.

These worksheets can be then electronically attached to 
MapleSim models. This means that both the model and the 
design documentation are kept in a single location, ensuring 
that the origin of design parameters can be audited and 
traced.

Symbolic Simplification and Computational Efficiency

After automatically generating the system equations, 
MapleSim simplifies them with symbolic techniques that 
include index reduction, differential elimination, separation 
of independent systems, and elimination of redundant 
systems. Symbolic simplification has two primary benefits:

• By symbolically resolving algebraic loops and through 		
	 reducing the complexity of DAEs, symbolic simplification 	
	 makes many (previously intractable) problems numerically   
	 solvable.

•  The simplified equations are provided to the numerical 		
	 solvers in a computationally efficient form. This reduces 		
	 the total simulation time, in some cases, by many orders of 	
	 magnitude.

Parameters System Description Solution Results Deploy

2-D Notation · Units · Maths Symbols · Expression Palettes · 
ODEs/PDEs · Matrices · Transfer Functions · Pole/Zero/Gain ·
Data Import · Equation Generation of Multibody Dynamic 
System with Tire Models through Block Diagram

Symbolic/Numeric Math · 
Programming Language · 
Context Sensitive Menus

Plots · Animation · Bode/
root-locus · Highly-efficient
Symbolic Equation Systems

Code Generation · Interactive
Web Page · RTW Compatible
Simulink Block for HIL Simulation

· Technical Document Interface ·Command Completion · Bracket Matching · Layout Control · Interactive Assistants · Task Templates 
· Help System · E-books · Toolboxes · Connectivity · Technical Support · Mapleapps.com

Figure 13. The Maple environment



Computational efficiency is particularly important for HIL 
studies because it allows an engineer to develop higher-
fidelity models while maintaining real-time performance.

As an example, engineers recently used MapleSim to 
develop a full-vehicle multibody model of a Chevy Equinox 
including pneumatic tires (22 degrees-of-freedom and 26 
state-space variables) and export the model to a dSpace 
simulator (using third-party tools). Even a modest perfor-
mance simulator (a 1 GHz PowerPC) achieved update rates 
of 63 μs. This was at least 16 times faster than the most 
popular existing tools, thus emphasizing the fact that 
MapleSim is better suited for real-time applications.

Multibody Dynamics

MapleSim uses graph-theoretic methods to generate the 
equations of motion for multibody systems. One feature of 
this approach is that it allows for the systematic separation of 
terminal equations (which describe how individual components 
interact) from topological equations (which describe how 
components are connected).  

This is significant because by managing topological 
equations intelligently, MapleSim’s multibody engine can 
directly control the state variables for a given system. Since 
the nature and number of the equations of motion are a 
direct result of the chosen state variables, controlling the 
state variables gives the multibody engine unprecedented 
control over equation complexity during the equation 
formulation process. This delivers computationally efficient 
sets of symbolic equations that are simplified further by 
Maple, and delivers faster simulations than approaches 
restricted to only using absolute coordinates as state 
variables. Benchmarks have shown much higher execution 
speeds than the most popular existing multibody tools.

The significance of selecting state variables and coordinate 
systems intelligently is evident even when modeling a 
system as simple as a pendulum (see Figure 7). (The other 
choices of coordinate systems can result in an index 3 DAE.)
 
 

Conclusion
This article has demonstrated how MapleSim addresses the 
limitations of current modeling and simulation technology. 
MapleSim does this by:

• 	Allowing engineers to use both acausal and causal 
	 modeling paradigms in the same model, so plant 
	 models 	and control systems can be prototyped in a 
	 manner that suits each task best

• 	Using symbolic technology to remove the complexities 		
	 that would cause other tools to fail during numerical 		
	 simulation, and to create computationally efficient models

• 	Offering multibody technology that produces highly 
	 efficient descriptions of even the most complex 2-D and 	
	 3-D multibody systems

• 	Supporting design documentation and engineering 		
	 analysis through integration with Maple

• 	Allowing natural multi-domain modeling that enables 		
	 the interaction between many physical domains to be 		
	 simulated

The development of MapleSim was, in part, motivated by 
a growing market demand for tools that can successfully 
model the increasingly complex systems that engineers 
need to simulate. MapleSim was built from a basis of 
technological superiority, and a development plan is in 
place to maintain this position of strength. 

“As an engineer, I want to be able to rapidly construct my initial model and have the software automatically handle 
peripheral design decisions.  However, once the process is further along, I want to be able to manage those details in order 
to optimize the system I’m modeling - and not be limited to the software’s generic algorithms.  One of the challenges in 
implementing the coordinate selection algorithms for the multibody engine was finding this balance between automa-
tion and user-control.  Linking preliminary coordinate selection to initial conditions specification allows for models to be 
initially set-up in an intuitive manner—coordinate selection “just happens”—without any explicit action on the part of 
the user.  However, this same mechanism allows advanced users to leverage their insight into the model to generate more 
efficient models.”
Dr. Chad Schmitke 
Lead Developer, Multibody Dynamics Library
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Maple is the essential technical computing 
software for today’s technical professionals. 
Whether you need to do quick calculations, 
develop design sheets, or produce sophisti-
cated high-fidelity simulation models, Maple 
provides the necessary technology to reduce 
errors and dramatically increase your analyti-
cal productivity. 

www.maplesoft.com/products/maple

The range of analytical products available from Maplesoft serves to complement the existing tools by 
providing a highly flexible, easy-to-use environment in which the engineer can explore ideas and concepts 

way beyond the inherent limits of more traditional tools.

For more information contact Maplesoft at:
1-800-267-6583 (USA and Canada) or via email at info@maplesoft.com. If you are outside of the US and Canada, please 
contact a reseller in your region.

A list of resellers is available at www.maplesoft.com/contact/international.

MapleSim is a physical modeling tool unlike any 
other.  MapleSim is built on a foundation of 
symbolic computation technology, which 
efficiently manages all of the complex 
mathematics involved in the development of 
engineering system models, including 
multi-domain systems and plant models for 
control applications.

www.maplesoft.com/products/maplesim


