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Abstract

Engineers constantly demand innovation in modeling and simulation.This is driven by the need to simulate, for example,
ever more sophisticated vehicle systems while minimizing development time and cost.The computer models necessary to
generate these designs consume project time at an increasing rate, due largely to the limitations of existing simulation tools
and the need to switch between tools to address multiple physical domains. While many existing simulation tools are based
on a design metaphor that works well for control system design, engineers do not find them intuitive for physical modeling.
Additionally, these tools often produce simulations that are too slow to model complex systems and, in some cases, lack the
mathematical power to solve the governing equations.

These are some of the issues that have driven the development of MapleSim, a new physical modeling tool from Maplesoft.
This article will explore the historical development of the early tools for simulation, and then expand on their design
deficiencies.This is followed by a discussion of MapleSim, its unique design characteristics,and how it bypasses the
limitations of current modeling and simulation technology.




MapleSim: Technological Superiority in Multi-Domain
Physical Modeling and Simulation

Introduction

Model-based development (MBD) involves developing
high-fidelity models of engineering systems and then
simulating them to understand how they will function
under operating conditions, identifying potential problems,
and developing solutions before going to the prototyping
stage. Not only does this process give engineers a much
better starting point when they begin creating prototypes,
it can reduce the number of prototyping cycles. Fewer
cycles reduce the time-to-production significantly, and save
hundreds-of-thousands, perhaps even millions, of

dollars in prototyping costs.
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Figure 1.System development process

Over the last 15 years, MBD has evolved into a widely
adopted process.The process is typically represented as aV
(Figure 1).The right side of the V is characterized by rigor-
ous testing programs, often using models that have been
produced in the Design and Development phases and run-

ning them in real time for Hardware-in-the-Loop (HIL) testing.

Eventually, this process leads to the complete integration of
the system that is ultimately released as part of the product.

The left side of the V encapsulates the use of simulation
software for virtual prototyping, where many of the design is-
sues can be identified and addressed on desktop computers
before the first prototype is built. While many of the software
tools used for this process typically address numeric simula-
tion, they do not provide an environment that engineers find
intuitive for physical modeling.This is because they are based
on a signal-flow metaphor that has changed little from the
days of the analog computer.

Modeling software that bypasses the limitations of signal-
flow tools has emerged, but inherent restrictions in their
technology and scope prevent them from being more widely
adopted.These deficiencies include:

» Modeling functionality that may be limited to a single
physical domain

» Numerical solvers that cannot adequately address the
math behind increasingly complex systems

 No support for design documentation

These limitations, and a growing market demand, have
motivated the development of MapleSim, a tool for physical
modeling and control systems development.

A Brief History of Modeling and Simulation
The Birth of Analog Computers

The earliest attempts at modeling physical systems were
called “analogs”; that is, the use of mechanisms that behave
the same or similarly as the system under study.These
“analogous” mechanisms could be used to predict the
behavior of a wide range of systems, such as Kelvin's 1879
tide predictor (Figure 2).This was essentially a set of pulleys,
cranks, and ropes that emulated the motion of the seas,
given certain properties about the location under study.
The tide predictor was followed by more sophisticated
mechanisms such as masses, springs, and dashpots that
could be configured to model the dynamics of systems.
Then came electronic components, such as inductors, ca-
pacitors, and resistors that could emulate the same
behavior but at a lower cost and with better precision.
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Figure 2. Kelvin’s tide predictor, 1879

Those components, along with the invention of the operational
amplifier, gave rise to the analog computer in the 1940s.
This provided scientists and engineers with a set of tools
that allowed signals to be added, multiplied, and integrated
— the three primary operations required to solve systems of
differential equations.




The analog-computation method for solving ordinary differ-
ential equations (ODEs) involved rearranging the equations
into integral form and simulating them with integration cir-
cuits with a combination of resistors, capacitors, inductors,
and op-amps. By attaching a pen recorder or voltage gauge
on an output line, it was possible to arrive at the predicted
behavior of highly complex systems (Figure 3). For example,
a network of operational amplifiers and linear passive
components would be sufficient to simulate a mass-spring-
damper, while the concept of current and voltage would

be used to simulate pressure drop and flow rate of water
through a pipe.

Figure 3. Model development process for analog computers

While electronic analog computers were a major break-
through, they were expensive tools available only to a
select few.

Signal-Flow Block Diagram Tools: A Legacy of the Ana-
log Computer

With the birth of the digital computer in the 1950s,a

wide range of numeric solvers that emulated the analog
computational approach were developed, but with a

wider breadth of application. While expanding the scope

of dynamic system simulation significantly, these were es-
sentially specialized programming languages that required
highly specialized skills and digital computers that were still
very costly.

Eventually, with the introduction of low-cost personal
computers and graphical user interfaces, the 1980s saw
the birth of the block-diagram environment that allowed
a much larger number of engineers to develop dynamic
system models on their own desktops.

The block-diagram environment was effectively a virtual
analog computer on a digital computer with the latest
numeric solvers (Figure 4). For the first time, engineers could
produce models on their desktops by “wiring” together
block components that represented the components their

predecessors would have done with electrical components
on real analog computers, but at a fraction of the cost.
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Figure 4. Typical block-diagram GUI

Consequently, this revolutionized the way engineering
simulations were performed and several tools of this nature
are used extensively today. By far, the most popular of these
is Simulink® from The MathWorks™, but there are also
SystemBuild™ (National Instruments®), EASY5™ (MSC Soft-
ware”), and VisSim™ (Visual Solutions), among others.

Signal-flow tools were rapidly adopted because of their
relatively low cost and highly intuitive user interface. Most
engineers would have taken a controls course in their
undergraduate studies and part of that course was to
learn how to draw schematic block diagrams to represent
dynamic systems and controllers. Hence, they were already
familiar with some of the principles involved.

Limitations of the Signal-Flow Modeling Paradigm
No Support for Automated Plant Modeling

The signal-flow approach is a laborious process that has not
changed in over 50 years:

1) The ODEs that describe the system dynamics must be
derived prior to using the signal-flow tool, usually by hand
based on the engineer’s knowledge of the underlying
physics.

2) The ODEs are rearranged into a series of integral
equations.

3) The integral equations are entered in block diagram
format on a computer.

This is still a manual process that is time-consuming, costly,
and requires intense human effort and a level of skill and
knowledge that is not always available.




Fixed Causality

The signal-flow paradigm forces model representations
into a fixed causality, meaning that a component can only
be represented one way. For example, consider a resistor
whose characteristic equation is

V= 1IXR,

whereV, |, and R are the voltage, current, and resistance,
respectively. The voltage can only be calculated if the
resistance and current are known. However, if the resistor
is driven by a voltage source and we want to calculate the
current, then a different representation is needed:

_r
I=p

Therefore, to fully represent a component for use in different
ways, all possible permutations of the governing equations
are required. While this concept is simple for a resistor, the
implications for complex components with multiple inputs
and multiple outputs are far greater.

This makes the creation of generalized component libraries
very difficult and forces engineers to choose the correct
form of the equation, depending on the inputs, prior to
building the model.

In essence, these legacy computer tools are causal in nature;
each block has a distinct cause and effect. A signal flows
into a block, the block performs a mathematical operation
on that signal, and the result flows out of the other side. This
is illustrated schematically in Figure 5.
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Figure 5.The causal approach to block diagram programming

This approach is useful for modeling systems that are purely
described by signals.These include control systems, digital
filters, and other signal processing systems.

It is not, however, intuitive to engineers when describing
systems such as an automotive drive train, which consists of
a network of interacting physical components.This requires
a completely different modeling paradigm.

Algebraic Loops

Dynamic system models use one or more variables that
vary with time; these are called states and they essentially
define the dynamics of the system. At any simulation step,
signal-flow tools use the computed value of each state vari-
able from the previous step to compute the current value.
Therefore, all state variables must have initial values so that
the values in the first step can be calculated.

However, there are many situations where the user can
define a loop that does not have state. A very simple
example is given in Figure 6.
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Figure 6. A simple algebraic loop
Mathematically, this represents

Z= U—-2z
which implies that the output value is directly related to the
input. Of course, there is a simple solution,

u
Z =
2
but standard signal-flow tools cannot reach this solution
algebraically. (Moreover, algebraic loops are usually much
more complex than this.)

Signal-flow tools have to resort to iterative numerical solvers
to resolve algebraic loops. This process cycles through the
loop until the input equals the output.This requires inter-
vention by the user to implement and puts considerable
delay in the simulation because it must go through many
iterations, calculating a solution at every time step.

Also, in some complex models, the solution can be very
sensitive to the iterative solver and numeric tolerances
used, and can easily become unstable.

The root of the difficulty is in the composition of systems.
Even if subsystems are described by ODEs, interconnected
systems may not be described by an ODE because intercon-
nections may create algebraic constraints. Mathematically,
these types of systems are defining Differential Algebraic
Equations (DAEs).




Differential Algebraic Equations

DAEs are very common in engineering problems and are
the basis for solving complex systems that are typically
represented as networks of components: electrical circuits,
hydraulics, pneumatics, and mechanical systems, to name
a few.The nature of these representations introduces alge-
braic constraints, with the drawbacks illustrated previously.

Consequently, tools that use physical components (and

not causal signal-flow blocks) to model the system have
emerged.These tools usually feature a DAE solver, but

they tend to be domain-specific. For example, several very
popular electric circuit modeling tools have emerged based
on the SPICE representation.These tools feature highly
specialized DAE solvers.

The need for a more generalized approach to modeling
networked physical components has led to several, often
competing, approaches based on graph theory. Two major
approaches are Bond Graphs and Linear Graphs.Each has
its strengths and weaknesses, but emerging products typi-
cally adopt either one or the other.

Probably the most difficult domain for which to provide

a generalized solver is in multibody mechanical systems.
Several approaches have emerged, including Newton'’s
equations, Lagrange’s equations, Kane's method, and Blajer’s
projection method.The common theme is that they all use
graph-theoretic methods for defining the system topology
and produce DAEs to represent the system mathematically.

Simplistically, DAEs are sets of ODEs that must also satisfy
algebraic equations that have been introduced through the
addition of physical constraints in the system.For example,
a simple RC circuit can be modeled with an ODE, but the
addition of a parallel capacitance introduces an algebraic
constraint that must be satisfied before the ODE can be
solved.

Further constraints add complexity to the DAE representation.
Depending on the nature of the constraint, complexity is
indicated by an increase in the index of the DAE.The index
is a count of the number of times the DAE needs to be
differentiated in order to reduce the problem to an ODE,

at which point it can be solved using standard differential
equation solvers.

Differentiation, however, magnifies numeric errors, and
therefore multiple differentiations will quickly render
solutions unusable unless techniques are used to reduce
the errors. Current index reduction techniques attempt to
reduce the errors, but they are generally only useful for up
to index 3.This is very limiting, since a generalized approach
to physical modeling can easily produce DAEs of index 3 or
greater.

For example, even a simple pendulum resolves to an index
3 problem if absolute Cartesian coordinates are used. If
the angular position of the pendulum is selected as the
generalized coordinate, the index is decreased to 0; that is,
an ODE. This is illustrated in Figure 7.
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Figure 7. Importance of coordinate selection when modeling
apendulum

MapleSim Design Features
Modeling at the Physical Component Level

MapleSim allows engineers to use both causal and acausal
modeling paradigms. With acausal modeling, each block is a
discrete physical component, such as a resistor or a
mechanical joint.Each block contains information about
which physical laws it must obey, and two connected
components exchange information about which physical
quantities (such as energy, current, torque, heat,and mass
flow, etc.) must be conserved. Figure 8 gives a schematic of
the process. (This should be compared to the corresponding
causal diagram in Figure 5.)

MapleSim provides a broad range of acausal physical
components across several physical domains; the equations
that define their behavior do not have to be derived or
entered manually. Engineers can also create their own
components; these are generated from the differential
equations, algebraic expressions, or transfer functions that
define the dynamics of the component.

Exchange of Information
Conservation Laws

Physical Component
Physical Laws

Physical Component
Physical Laws

Figure 8.The acausal approach to block diagram programming




Acausal modeling better represents how physical components
interact; this has two important corollaries:

MapleSim block diagrams bear a far closer visual resem-
blance to the real system than models created by tools
that use the causal, or signal-flow, approach.This is empha-
sized in Figure 9, which compares the causal and acausal
approach to modeling a double mass-spring-damper.

MapleSim is easier to use and features a shorter learning
curve than signal-flow tools. This is because its use is not
predicated on the ability to derive system equations, but
on the inherent talent of engineers to visualize how
physical components connect and interact in real
systems.

MapleSim model

Traditional model

Figure 9. A comparison of the causal and acausal approach to
physical modeling

Hybrid Physical and Signal-Flow Modeling

MapleSim allows both modeling at the physical component
and signal-flow level within the same model.This enables both
the plant model and the control system to be prototyped with
the modeling approach that suits each task best.

An example of a hybrid system is given in Figure 10.1t is a
model of a DC motor with an associated control system.
Note that both electrical and mechanical components are
integrated in the same model.

Signal-Flow Blocks

Multi-Domain Physical Components

Figure 10.Mixed signal-flow blocks and multi-domain physical
components

Multi-Domain Modeling

Many physical modeling tools (such as those based on SPICE)
are dedicated to a single domain.This is highly restrictive
because engineers often need to model the subtle effects
that one domain has on another.For example, given the
appropriate set of operating conditions, there is a high cor-
relation between the variation of the voltage across a motor
and the vibration of an attached mechanical arm.That critical
relationship would be far more difficult to discover (and to
correct, if needed) if the electrical motor and the mechanical
system were simulated in separate systems.

MapleSim is naturally multi-domain, and contains components
from rotational and translational mechanics; analog, digital,
and multiphase electric circuits; multibody mechanics; and
thermodynamics. It also has standard continuous and
discrete functionality.

“One of the most exciting aspects of the MapleSim project is the opportunity to work on the modeling process from the beginning
where the system is specified by high level description in the form of a component diagram, to a set of mathematical equations
representing the model of the system, and finally to the simulation results. Each stage of the process presents a different set of
challenges. From the translation of the graphical representation to the mathematical equations, the challenge is in the generation
of equations. From equations to simulation, the challenge is in the manipulation of equations, as well as in the simplification of
the model itself. And, of course, simulation is just one of the features offered by MapleSim. The integration of MapleSim and Maple
provides a natural extension that allows users to perform advanced analysis on their MapleSim system model and to create high
impact technical documentation. This makes MapleSim a very powerful, and yet flexible, integrated tool for modeling, simulation,
and analysis of everyday physical dynamic systems.”

Dr. Gilbert Lai

Lead Developer, Simulation Engine Library




MapleSim will not allow connections where they are not
physically meaningful; an inductor, for example, cannot be
coupled directly with a rotational inertia component.

A simple MapleSim multi-domain model is given in Figure 11,
in which the resistor in a DC motor produces heat that varies
with the current passing through it.The heat drains into a
heat sink whose temperature varies with the heat produced
by the resistor. This model combines three physical domains:
electrical, 1-D mechanical rotational, and thermal.

T =

Figure 11.A simple multi-domain model

Design Documentation and Model Analysis

MapleSim is supported by Maple's computational Engine.
Maple is a software tool that helps technical professionals

do math on a computer. It has a broad range of numeric and
symbolic math functions, together with tools for visualization
and deployment of solutions. A Maple worksheet is both an
executable statement and documentation of the problem
domain;ideas and assumptions can be recorded in the same
environment as the math and algorithms.

A diagram of Maple features and how they map onto the
engineering problem solving process is given in Figure 12,
while Figure 13 shows an example of a Maple document.
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Figure 12. Maple and the engineering problem solving process

Maple provides the symbolic and numeric routines that
MapleSim uses to simplify and solve system models.These
algorithms are the result of over 25 years of continual
investment in research and design.

Maple worksheets can also be used to analyze and document
MapleSim models.Through an interactive link,a Maple
worksheet can be used to extract, view, and manipulate the
symbolic equations that are created by a MapleSim model
(see Figure 13).
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Figure 13.The Maple environment

Worksheet templates are provided for plotting Bode and root-
locus diagrams, optimization, generating C code, and creating
custom components. In particular, these templates can be
used to find the controller gains that minimize rise time and
attenuate overshoot,and create custom components from
algebraic expressions, differential equations, and transfer
functions.

These worksheets can be then electronically attached to
MapleSim models.This means that both the model and the
design documentation are kept in a single location, ensuring
that the origin of design parameters can be audited and
traced.

Symbolic Simplification and Computational Efficiency

After automatically generating the system equations,
MapleSim simplifies them with symbolic techniques that
include index reduction, differential elimination, separation
of independent systems, and elimination of redundant
systems. Symbolic simplification has two primary benefits:

« By symbolically resolving algebraic loops and through
reducing the complexity of DAEs, symbolic simplification
makes many (previously intractable) problems numerically
solvable.

« The simplified equations are provided to the numerical
solvers in a computationally efficient form.This reduces
the total simulation time, in some cases, by many orders of
magnitude.




Computational efficiency is particularly important for HIL
studies because it allows an engineer to develop higher-
fidelity models while maintaining real-time performance.

As an example, engineers recently used MapleSim to
develop a full-vehicle multibody model of a Chevy Equinox
including pneumatic tires (22 degrees-of-freedom and 26
state-space variables) and export the model to a dSpace
simulator (using third-party tools). Even a modest perfor-
mance simulator (a 1 GHz PowerPC) achieved update rates
of 63 ps.This was at least 16 times faster than the most
popular existing tools, thus emphasizing the fact that
MapleSim is better suited for real-time applications.

Multibody Dynamics

MapleSim uses graph-theoretic methods to generate the
equations of motion for multibody systems. One feature of
this approach is that it allows for the systematic separation of
terminal equations (which describe how individual components
interact) from topological equations (which describe how
components are connected).

This is significant because by managing topological
equations intelligently, MapleSim’s multibody engine can
directly control the state variables for a given system. Since
the nature and number of the equations of motion are a
direct result of the chosen state variables, controlling the
state variables gives the multibody engine unprecedented
control over equation complexity during the equation
formulation process.This delivers computationally efficient
sets of symbolic equations that are simplified further by
Maple, and delivers faster simulations than approaches
restricted to only using absolute coordinates as state
variables. Benchmarks have shown much higher execution
speeds than the most popular existing multibody tools.

The significance of selecting state variables and coordinate
systems intelligently is evident even when modeling a
system as simple as a pendulum (see Figure 7).(The other
choices of coordinate systems can result in an index 3 DAE.)

Conclusion

This article has demonstrated how MapleSim addresses the
limitations of current modeling and simulation technology.
MapleSim does this by:

+ Allowing engineers to use both acausal and causal
modeling paradigms in the same model, so plant
models and control systems can be prototyped in a
manner that suits each task best

Using symbolic technology to remove the complexities
that would cause other tools to fail during numerical
simulation, and to create computationally efficient models

Offering multibody technology that produces highly
efficient descriptions of even the most complex 2-D and
3-D multibody systems

Supporting design documentation and engineering
analysis through integration with Maple

Allowing natural multi-domain modeling that enables
the interaction between many physical domains to be
simulated

The development of MapleSim was, in part, motivated by
a growing market demand for tools that can successfully
model the increasingly complex systems that engineers
need to simulate. MapleSim was built from a basis of
technological superiority,and a development plan is in
place to maintain this position of strength.

“As an engineer, | want to be able to rapidly construct my initial model and have the software automatically handle
peripheral design decisions. However, once the process is further along, | want to be able to manage those details in order
to optimize the system I'm modeling - and not be limited to the software’s generic algorithms. One of the challenges in
implementing the coordinate selection algorithms for the multibody engine was finding this balance between automa-
tion and user-control. Linking preliminary coordinate selection to initial conditions specification allows for models to be
initially set-up in an intuitive manner—coordinate selection “just happens”"—without any explicit action on the part of
the user. However, this same mechanism allows advanced users to leverage their insight into the model to generate more

efficient models.”
Dr. Chad Schmitke
Lead Developer, Multibody Dynamics Library







The range of analytical products available from Maplesoft serves to complement the existing tools by
providing a highly flexible, easy-to-use environment in which the engineer can explore ideas and concepts
way beyond the inherent limits of more traditional tools.

Products used in this article .
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