
M odern machine-vision systems typically contain
faster and more powerful PC platforms, robust 32-
bit operating systems, and easy-to-use integrated

software applications, making machine-vision systems more
powerful, easier to program, and less expensive to use than ever
before. To take full advantage of these powerful systems and
painlessly integrate them into your manufacturing line, it is
best to take some time to learn the basics about what makes up
a vision system, how it is implemented, and the importance of
proper planning.

Machine vision can be used in a wide variety of manufac-
turing operations for repetitive inspection tasks in which
accuracy and reliability are important (e.g., verifying date
codes on food packaging, inspecting automotive parts for
proper assembly, and performing robotic guidance for pick
and place operations).

building the system
Because the uses of machine vision are so diverse, specific
components can vary from system to system. However, most
systems generally include an input source, optics, lighting, a
part sensor, a frame grabber, a PC platform, inspection

software, digital I/O and a network connection, and an X-Y
positioning table (see figure).

The input sources and optics usually consist of one or more
cameras and optical systems that take one or more images of
the part being inspected. Depending on the application, the
cameras can be standard monochrome RS-170/CCIR, compos-
ite color (Y/C), RGB color, non-standard monochrome
(variable-scan), progressive-scan, line-scan, or custom CCD
arrays (used for x-ray).

Illuminating the part for optimal data acquisition requires out-
side lighting. These assemblies come in various shapes and sizes
and are available in a variety of intensities. The most common
lighting types are high-frequency fluorescent, LED, incandes-
cent, and quartz-halogen fiber-optic.

For maximum efficiency, the system must be triggered by a
part sensor to acquire an image when the part under test is in the
correct position. Often in the form of a light barrier or sensor,
the part sensor sends a trigger signal when it senses that a part is
in close proximity.

The frame grabber, or video capture card, interfaces the imag-
ing units to the host computer. The frame grabber takes the
image data provided by the camera(s) in either analog or digital

34 s p i e ’s oe m a g a z i n e | m a y 2 0 0 2

tutorialtutorial

By Christopher Poling, Data Translation

DESIGNING A

SYSTEM

ILLUSTRATION BY BRYAN LEISTER

form and converts it to information for use by the host PC. This
component is usually in the form of a plug-in board installed in
the PC. A frame grabber can also provide signals to control cam-
era parameters such as triggering, exposure/integration time, and
shutter speed. Frame grabbers come in various configurations to
support different camera types as well as different computer bus
platforms (PCI, compact PCI, PC104, ISA, etc.)

A computer is a necessary part of a machine-vision system.
Inspection applications generally require a Pentium III or
equivalent. In general, the faster the PC, the less time the vision
system will need to process each image. The vibration, dust,
and heat often found in manufacturing environments fre-
quently require the use of an industrial-grade or ruggedized PC.
Software processes incoming image data and makes pass/fail
decisions. Machine-vision software can come in many different
forms and can be single function (designed only for one pur-
pose like LCD inspection, ball grid array inspection, alignment
tasks, etc.) or multi-function (designed with a suite of capabili-
ties including gauging, bar code reading, robot guidance,
presence verification, and so on).

Once the system has acquired an image, that image and the
resulting data may need to be accessed by other users/systems
to control the manufacturing process, communicate pass/fail
information to a database, or both. Usually, a digital I/O inter-
face board and/or network card makes up the interfacing
through which the machine-vision system communicates with
other machines, systems, and databases.

The X-Y positioning table automates the process of acquiring
images of multiple samples. The table moves a predetermined
distance after each image is acquired to properly position the
next object or specimen in relation to the camera. The majority
of X-Y tables have rapid smooth movement that minimizes
image distortion and virtually guarantees a clean image without
the need for using a progressive scan frame grabber.

choosing your hardware
Careful planning and attention to detail will help ensure that
your inspection system meets your application needs. Knowing

your goals is perhaps the most important step in the process.
Inspection operations fall into several categories: performing
measurements or gauging, recognizing and identifying specific
features (pattern matching), reading characters or encoded (bar
code) information, detecting the presence of an object or mark-
ing, comparing objects or matching an object to a template,
and guiding a machine or robot.

The inspection process can contain one operation or many
depending on the requirements and goals. First, you should
identify what tests you need to adequately inspect the part
(measurement, presence verification, or optical character
recognition), as well as what type of defects you expect to
occur. To help identify which are most important, create a
weighted list of required and optional tests. Build a list that
satisfies the main inspection criteria. You can add additional
tests later, but keep in mind that more tests means more
inspection time.

Knowing your speed requirements for testing is critical.
Knowing the amount of time the system will have to inspect
each component or part will not only determine the minimum
clock speed of the PC but may also affect the speed of the line.
Many machine-vision software packages incorporate a
clock/timer so that each step of the inspection operation can be
closely monitored. From this data, you can modify the program
and/or the motion process of the part to fit within the required
timing window. Often, PC-based machine-vision systems can
inspect 20 to 25 components per second, depending on the
number of measurements or operations required and the speed
of the PC used.

A machine-vision system is only as strong as its individual
components. Any shortcuts made during the selection
process—especially those involved in the optics and imaging
path—can greatly reduce the effectiveness of a system. The fol-
lowing are a few basics you should keep in mind when
choosing components involved in the image path.

Camera selection is directly tied to the application require-
ments and usually involves three main criteria: whether the test
involves a color-specific imager, whether the parts will be in

motion, and what resolution
will be required. Monochrome
cameras are used for a majority
of inspection applications
because monochrome images
provide 90% of the available
visual data and are less expen-
sive than their color
counterparts. Color cameras
are used when inspection appli-
cations require color-specific
image data to be analyzed.
Whether the part being
inspected is stationary or in
motion will dictate the expo-
sure time and whether a
standard interlaced camera can
be used or if a progressive-scan
camera is required to ensure a
sharp image. In addition, the
camera’s resolution should be

m a y 2 0 0 2 | s p i e ’s oe m a g a z i n e 35

Figure A typical machine-vision system generally includes an input source, optics,
lighting, a part sensor, a frame grabber, a PC platform, inspection software, digital
I/O and a network connection, and an X-Y positioning table.

36 s p i e ’s oe m a g a z i n e | m a y 2 0 0 2

high enough to ensure that it can capture the proper amount
of information needed for the inspection task. Finally, cam-
eras should be high quality and rugged enough to withstand
vibration, dirt, and heat present in an industrial environment.

Optics and lighting are often overlooked. When poor optics
or lighting is used, even the best machine-vision system will not
perform as well as a less capable system with good optics and
adequate lighting. Design properly from the beginning, and
don’t depend on software to overcome design flaws. The typi-
cal goal for optics is to use lenses that produce the sharpest
clarity and largest usable image, thus providing the best image
resolution. The goal for lighting is to illuminate the key fea-
tures being measured or inspected. The type of light used often
will be dictated by those features, which include the color, tex-
ture, size, shape, and reflectivity of the object.

Although the frame grabber is only one part of a complete
machine-vision system, it plays a very important role. The
choice of frame grabber is defined by the characteristics of the
camera it must interface to—for example, is it monochrome,
color, digital, analog, and so on. With digital frame grabbers,
the goal is to ensure that the digital image data from the cam-
era is formatted properly prior to passing it onto the PC for
processing. With analog frame grabbers, the goal is to acquire
the image data from the camera and convert it to digital data
with as little alteration to the image data as possible.

Using the wrong frame grabber can introduce errors in the
image data. Industrial frame grabbers are typically used for
inspection tasks, for example, while multimedia frame grabbers
should be avoided. Multimedia boards can alter the image data
with automatic gain controls, edge sharpening, and color-
enhancement circuits. Although the images look more
appealing to the eye, when processed by the system’s software
they can result in errors that directly affect the accuracy of the
inspection process.

Removing as many variables as possible is key. The human
eye and brain can identify objects in a wide variety of condi-
tions. A machine-vision system is not as versatile; it can only do
what it has been programmed to do. Knowing what the system
can and cannot see will help you avoid false failures (wrongly
identifying good parts as bad) or other inspection errors.
Common variables to consider include ambient lighting, back-
ground color, requirement for image focus, and large changes
in part color, finish, orientation, or position. Proper camera
mounting, secure lighting positions, constant and repeatable
part/component positioning, and blocking of external or sur-
rounding lighting can eliminate many common set-up and
false-failure problems.

New advanced algorithm technologies for dynamic machine-
vision applications are emerging that can perform inspection
applications without the need for strict control of operating
parameters. These algorithms are designed to allow the system
to function efficiently in environments that dynamically
change. Machine-vision systems that use these new algorithms
are no longer hindered by changes in part orientation, rotation,
scaling, lighting, image quality, and so on. A machine-vision
package with dynamic algorithms, such as our DT Vision
Foundry package, can cope with changing parameters. For
example, a search tool based on this technology is well suited to
applications in which lighting variations, such as poor contrast,
glare, reflection, and inversion, are problematic.

choosing your software
The machine-vision software is the centerpiece of the
inspection system. The software selected will determine the
length of time required to generate and debug inspection
programs, what inspection operations can be performed,
how well those operations can be performed, as well as
many other important factors (see sidebar).

Machine-vision software packages that provide a graphi-
cal user interface are usually easier to program than their
code (Visual BASIC or Visual C+ +) counterparts but can
sometimes be limited when specialized features or func-
tions are required. Although they require programming
expertise, code-based packages can be more flexible if
you’re developing complex application-specific inspection
algorithms. Some machine-vision software packages offer
both graphical and code-level development environments,
providing the best of both worlds and giving users the
additional flexibility of selecting the environment needed
to match the application requirements as well as the pro-
gramming expertise available.

The overall objective for a machine-vision system is to
perform a quality assurance role by separating the good
parts from the bad ones. To do this, the system needs to
communicate to the manufacturing line that a part is bad
so that action can be taken. Usually this information is
conveyed via the digital I/O board, which is connected to
the manufacturing line’s programmable logic controller
(PLC). The bad part is then separated from the good parts.
In addition, the machine-vision system may be connected
to a network to allow data to be transferred to a database
for data logging purposes. Data can then be analyzed by
quality-control personnel to determine why the fault
occurred.

Careful planning at this stage will ensure smooth inte-
gration of the machine-vision system into the line. Many
companies would like to network their vision systems so
that remote access is available. Transferring images and
data can be very beneficial to the customer to prove total
quality control. This information/requirement is very
strategic to the design of a machine-vision system. You
must know what PLC will be used and how is it interfaced,
what types of output signals you’ll require, what kind of
network is currently used or required, and what kind of
file formats will be transferred on the network. Typically,
communication to a database is done via an RS-232 line
connected to the manufacturer’s network to track failure
information.

When selecting components for a machine-vision system,
consider future production requirements and changes. This
can directly impact which features will be needed in the
machine-vision software/hardware, as well as how easily the
system can be altered to meet changing requirements and
different tasks. Planning ahead will not only save time but
will help reduce the overall cost of the system if it can be
used for other inspection tasks in the future. oe

Christopher Poling is senior machine vision applications engineer at Data
Translation, Marlboro, MA. Phone: 508-481-3700; e-mail:
cpoling@datx.com.

m a y 2 0 0 2 | s p i e ’s oe m a g a z i n e 37

software engineering:

THE SEVEN DEADLY SINS

By Phillip Laplante, Penn State University

Perhaps because many imaging engineers are not trained
in software engineering, or because of pressures to com-

plete the project, basic software engineering practices are
often not followed or followed poorly during imaging systems
software development. Typical problems include lack of soft-
ware requirements, poorly written requirements, failure to
design for test, poor design of software, and improper or insuf-
ficient testing and documentation. Managers, engineers, and
even customers often excuse these practices by citing pres-
sures to market, high cost-to-benefit ratio, and (unfulfilled)
promises to go back and fix things later.

Poor software-engineering practices early in the project can
plague the system long after it is commercialized, costing time,
money, and reputation. Therefore, making an early commit-
ment to good software-engineering practices can pay huge
dividends throughout the software life cycle.

the sins
My experiences in developing systems and consulting with
other software engineers over the years have caused me to
realize that there are several thematic problems that occur
during the course of software development. Whether this situa-
tion exists because of poor training of the engineers,
management, and customer pressures or simply a culture of
malaise is unclear. It could be that because everyone is doing
it, everyone goes along. In any case, these poor software
engineering practices can be roughly organized into what I call
“The Seven Deadly Sins of Software Development.”

Pride
Failure to document code is one form of excessive pride that is
manifest throughout the industry. “My code is self-document-
ing” is a familiar protest, along with “I had to work hard to
develop the algorithm; therefore, others should work just as
hard to understand it.” The reality is that it simply isn’t possible
to make a nontrivial algorithm (such as those we find in imag-
ing applications) easily understandable to every reader of the
code. Documentation is a must.

Envy
Every engineer has his/her idol and favorite code written by
that person. Certainly, code reuse is a wonderful and economi-
cal practice when followed correctly. No one wants to rewrite a
module that is thought to work perfectly, and many of us feel ill
equipped to challenge the assumptions or the reputations of
others. When software is reused indiscriminately and without
proper testing and documentation, numerous problems can
occur, and these are very hard to detect.

Lust
It is an engineer’s nature to anticipate needs and to provide for
them. When developing software, we often believe that more
is better—we can always find a way to use these features
later. “Gold plating,”or lusting for unnecessary features, can
lead to memory and time overloading problems and should be
avoided.

Greed
Perhaps the greatest of these sins, greed, is committed
because of our eagerness to bring the software to market. And
of all the sins, this is the one that management is most likely to
condone. Yet study after study and years of practical experi-
ence have shown that investing a modest amount of time early
in development to focus on specifications, design, and docu-
mentation can save millions in life-cycle costs later.

Gluttony
Excess code and over-engineering of algorithms is the bane of
most engineers. We want things not only to work but to be a
monument of ingenuity. Remember that parsimony and ele-
gance, without sacrificing clarity, are essential for the
maintenance of a software system through personnel changes
over a long period of time.

Sloth
Perhaps the worst example of software sloth is failure to test
the software sufficiently or to test without documentation.
Insufficient testing can foster problems that will emerge later in
the life of the system when sections of the code are stressed by
expert users. Failure to document testing procedures or to
develop a coherent test plan can make it difficult or even
impossible to test a system as new features are added later.

Anger
Believe it or not, engineering can get personal. Team mem-
bers stop talking to one another or set about outright
sabotage. This is a management problem, but after all, much
of software engineering falls more rightly into the realm of
management than engineering. Team imbalances or personal-
ity issues need to be identified and fixed immediately.

Phillip LaPlante is an associate professor of software engi-
neering at Penn State University, West Chester, PA. Phone:
610-725-5314; fax: 610-889-1334;
e-mail: plaplante@gv.psu.edu.

My colleagues and I are continuing research into the prac-
tices of imaging engineers in software requirements
specification. To learn more and to participate in a survey
assessing the state of affairs, please visit
www.personal.psu.edu/cjn6/survey.html. Participants in
the survey can request the study results; we hope to pub-
lish these results in an appropriate journal soon.

SPIE
member

