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General Implications 
 
First principle relationships can define process cause and effects that can lead to improved 
controller tuning and performance by the selection of better tuning rules and process variables 
for scheduling of tuning settings. It also affects the choice of control valve trim and the 
feedforward design.  The understanding of these relationships does not require a degree in 
chemical engineering but presumes just some understanding of common terms (e.g. heat transfer 
coefficient and area), relationships (e.g. ideal gas law), and physical concepts (e.g. conservation 
of mass and energy).  
 
Equations have been developed from first principle relationships for the process gains, dead 
times, and time constants of volumes with various degrees of mixing. The results show that for 
well mixed volumes with negligible injection delays, the effect of flow cancels out for the 
controller gain if one of the following methods is used: Lambda self-regulating rule where 
Lambda is set equal to the dead time, or the reaction curve method. The effect of flow also 
cancels out for the reset time besides the controller gain if the process is treated as a “near 
integrator” and the Lambda integrating tuning rule is used. This is because the flow rate cancels 
out in the computation of the ratio of process gain to time constant that is the “near integrator” 
gain. This ratio and “near integrator gain” are inversely proportional to the process holdup mass 
(e.g. liquid mass). However, for temperature control the effect of changes in liquid mass cancels 
out because a change in level increases the heat transfer surface area covered. Several authors 
have mistakenly tried to schedule controller tuning based on liquid level for reactor temperature 
control. One author has reported being bewildered by its failure. This is not the case for gas 
pressure control. The equations show that liquid level has a profound effect on the process 
integrating gain for vessel pressure control because it changes the vapor space volume without 
any competing effect. To summarize, the integrator gain for composition and gas pressure is 
inversely proportional to liquid level (liquid mass). For temperature, the effect of level cancels 
out unless the level is above or below the heat transfer surface area, which is unusual but can 
occur at the beginning or end of a batch when coils instead of a jacket is used for heat transfer. 
For temperature, the integrator gain is nearly always proportional to the overall heat transfer 
coefficient that is a function of mixing, process composition, and fouling or frosting. 
 
The equations also show that if the transport delay for flow injection is large compared to the 
time constant, which does occur for reagent injection in dip tubes for pH control), then the 
controller gain will be proportional to flow. Note that pH control is a class of concentration 
control. 
 
For the control of temperature and concentration in a pipe, the process dead time and process 
gain are both inversely proportional to flow and the process time constant is essentially zero, 
which makes the actuator, sensor, transmitter, or signal filter time lag the largest time constant in 
the loop. Thus, the largest automation system lag determines the dead time to time constant ratio. 
For a static mixer, there is some mixing, and the process time constant is inversely proportional 
to flow but is usually quite small compared to other lags in the loop. The controller gain is 
generally proportional to flow for both cases. 
 



First Principle Process Relationships  
 

   
   

Finally, the above has implications so far as whether a flow feedforward multiplier or summer 
and whether a linear or equal percentage trim should be used. A flow feedforward multiplier and 
equal percentage trim, which both have a gain proportional to flow, can help compensate for a 
process gain that is inversely proportional to flow provided the process time constant is not also 
inversely proportional to flow. This is generally the case for temperature and concentration 
control of plug flow volumes (pipelines, static mixers, and heat exchangers). For well mixed 
volumes, feedforward summers and an installed linear characteristic for valves is generally best. 
For control valves this corresponds to a linear trim when the available pressure drop that is much 
larger than the system pressure drop or critical pressure drop so the installed is close to the 
inherent flow characteristic. 
 
The results are also useful for determining the dead time to time constant ratio, which has a 
profound effect on the tuning factors used and the performance of dead time compensation, 
which has been discussed on the Control magazine voices Control Talk Blog site. 
   
 
Batch Implications 
 
Plug flow volumes can always be considered as continuous because the volume is completely 
full and anything entering will be discharged after a transportation delay.  
 
A back mixed volume is partially full. If the liquid discharge flow is zero, this volume can be 
considered to be in the batch mode rather than the continuous mode. If the flows are all 
sequenced and charged based on time and/or totals, the vessel operation can be considered to be 
pure batch. If reactor flows are ratioed and manipulated by a control loop, the vessel operation 
can be classified as fed-batch.  
 
Level has an integrating response whether in the batch or continuous mode. In the batch mode, it 
is a zero load integrator in that all the feed flows must be zero for the level to stop rising. Level 
has a one sided integrating response in the batch mode since the level can only rise and not drop. 
This type of response causes overshoot for any controller with reset action.  Proportional plus 
derivative (PD) controllers with a zero or negative bias can be tuned for zero overshoot. 
 
The temperature response of a back mixed volume remains self-regulating even for zero liquid 
discharge flow unless the liquid level is above or below the heat transfer surfaces. However, the 
temperature response does lose some self-regulation and behaves more like a “near integrator’. 
 
The concentration response of a back mixed volume becomes integrating for a zero discharge 
flow. This is not obvious because the discharge flow cancels out of the differential equation from 
the application of the multiplicative rule of integration in the transition of the derivative from the 
rate of accumulation of component mass to the rate of accumulation of component concentration. 
The effect of zero discharge flow is more recognizable if we consider the case of a zero reaction 
rate so that the process time constant is simply the residence time (liquid mass divided by the 
liquid feed flow rate). The increase in mass for a fixed feed rate over the residence time is simply 
the feed rate multiplied by the residence time. The result is an increase in mass equal to the 
existing mass. This doubling of mass doubles the residence time and hence the process time 
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constant. Consequently, the process never reaches a steady state because the process time 
constant is constantly increasing as the level is rising for a zero discharge flow. For the case of 
zero reaction, the integrator is a zero load integrator because the feed of the component must be 
zero for the concentration of the component to stop rising.  The concentration here has a one 
sided integrating response in that the concentration can only increase and not decrease. This 
would also be the case for reaction products where there is only a forward reaction (no reverse or 
side reactions). As with level, overshoot is a problem unless PD controllers are used. Alternately, 
the controlled variable can be translated to a rate of change of concentration as noted in 
application of model predictive control for bioreactor biomass and product concentration. 
 
Gas pressure is an integrator regardless of liquid discharge flow as long as the pressure in the 
vessel has a negligible effect on vent flow, which is the case for large or critical pressure drops. 
If this is not the case, the gas pressure response becomes self-regulating but for large volumes 
and small vent flows it behaves like a “near integrator.” 
 

Results 
 
The integrating process gain ( ipK ) for the control of liquid level by the manipulation of a flow: 

)/(1 ooip AK ∗= ρ           (F.4d) 
 
The integrating process gain ( piK ) for the control of pressure per gas law by the manipulation 
of a flow: 
 

[ ]gggip VTRK /)( ∗=           (F.5d) 

 
For the manipulation of jacket temperature to control outlet temperature, the main process time 
constant ( pτ ) is (positive feedback if heat of feed and reaction exceeds product of heat transfer 
coefficient and area): 
 

[ ]AUTQFCMC orfpopp ∗+∆∆−∗∗= //)(τ       (F.6g) 
 
For the manipulation of jacket temperature to control outlet temperature, the integrating process 
gain ( pK ) is: 
 

[ ]AUTQFCAUK orfpp ∗+∆∆−∗∗= //)(        (F.6h) 
 
For the manipulation of jacket temperature to control outlet temperature, the near integrating 
process gain ( nipK ) is: 
 

)(/)( opnip MCAUK ∗∗=          (F.6i) 
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For the manipulation of feed temperature to control outlet temperature, the process gain ( pK ) is: 
 

[ ]AUTQFCFCK orfpfpp ∗+∆∆−∗∗= //)(        (F.6j) 
 
For the manipulation of feed flow to control outlet temperature, the process gain ( pK ) is: 
 

[ ]AUTQFCTCK orfpfpp ∗+∆∆−∗∗= //)(        (F.6k) 
 
For manipulation of jacket temperature, the additional small secondary process time constant 
associated with the heat capacity and mass of the jacket wall is: 
 

[ ]AUMC wwp ∗∗= /)(2τ          (F.6l) 
 
The process dead time ( pθ ) from the turnover time for temperature and concentration control in 
a well mixed volume is: 
 

[ ]vvorafoop FFFFM rrrθ //)(/)/( +++=        (F.6m) 
 
The process dead time ( pθ ) from injection delay for concentration control is: 
 

)/(/ 111 ρθ FVp =           (F.6n) 
 
For the manipulation of feed flow to control reactant concentration ( AoX ), the main process time 
constant ( pτ ) is: 
 

)(/ fxop FRM +=τ           (F.7g) 
 
For the manipulation of feed flow to control reactant concentration ( AoX ), the process gain 
( pK ) is: 
 

)/( fxAfp FRXK +=           (F.7h) 
 
For the manipulation of feed flow to control reactant concentration, the near integrating process 
gain ( nipK ) is: 
 

oAfnip MXK /=           (F.7i) 
 
For the manipulation of feed concentration to control reactant concentration, the process gain 
( pK ) is: 
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)/( fxfp FRFK +=           (F.7j) 
 
For plug flow volumes where different streams are being combined, the process gain ( pK ) for 
controlling the temperature of the mixture ( fT ) by the manipulation of flow is: 
 

ifp FTdFdTK ∑== // 11           (F.9a) 
 
For plug flow volumes where different streams are being combined, the process gain ( pK ) for 
controlling the composition of component A ( AfX ) in the mixture by the manipulation of flow 
is: 
 

iAAfp FXdFdXK ∑== // 11          (F.9b) 
 
For plug flow volumes where different streams are being combined, the process dead time for 
controlling the temperature or composition of the mixture by the manipulation of flow is: 
 

)/(/)/(/ 111 iipp FVFV ρρθ ∑+=         (F.9c) 
 
The process time constant is essentially zero for true plug flow. For a static mixer there is some 
back mixing, the residence time in Equation F.9c is split between a dead time and time constant 
per equations F.9d and F.9e.   
 

)/(/)/(/ 111 iipp FVxFV ρρθ ∑∗+=         (F.9d) 
 

)/(/)1( iipp FVx ρτ ∑∗−=          (F.9e) 

 

Derivations 
 
There are three types of processes; self-regulating, integrating, and runaway as shown in Figures 
F.1, F.2, and F.3, respectively. A self-regulating process will decelerate to a new steady state. An 
integrating process will continually ramp. A runaway process will accelerate until hitting a relief 
or interlock setting. 
 
Over 90% of the processes are self-regulating. However, many of the continuous and fed-batch 
processes in the chemical industry with the greatest direct economic benefits behave and can be 
best treated as “near integrating” processes. The classic integrating process is a pure batch or 
level process. Less than 1% of the processes are runaway. When these exist, understanding the 
runaway response is critical in terms of safety and control because of the propensity to accelerate 
and reach a point of no return. Runaway responses are almost exclusively associated with highly 
exothermic reactors used in plastics and specialty chemical production. 
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This note develops the equations for process dynamics for back mixed volumes and plug flow 
volumes. The back mixed volumes section applies to volumes whenever an agitator pumping 
rate, an eductor or recirculation liquid flow rate, or gas evolution or sparge rate produces enough 
turbulence and back mixing to make the mixture more uniform in the axial besides the radial 
direction of the volume. Gas volumes generally have enough turbulence and a fast enough gas 
dispersion rates to be treated as a back mixed volume. The equations therefore hold relatively 
well for an evaporator and a single distillation stage due to turbulence from the vapor flow. The 
plug volume section applies to static mixers, pipelines, coil inlets, and jacket inlets where the 
turbulence from pipe fittings or internal mixing elements creates enough radial mixing to make 
the mixture uniform over the cross section of the pipe or nozzle inlet but little axial mixing.  

 
 

Figure F.1 Self-Regulating (Negative Feedback) Process. 
 
 

Figure F.2 Integrating (Zero Feedback) Process. 
 
 

Figure F.3 Runaway (Positive Feedback) Process. 
 
 

Back Mixed Volumes 
 
For a back mixed volume, the process gains and time constants can be readily identified if the 
ordinary differential equations for the rate of accumulation of energy or material in the volume 
are set up so that the process output of interest (Y) is on right side with a unity coefficient. From 
this simple generic form we can identify the process time constant ( pτ ) as the coefficient of 
derivative of the process output (dY/dt) and the process gain ( pK ) as the coefficient of the 
process input (X). The process output (Y) and input (X) can be viewed as the controlled and 
manipulated variables, respectively. Many other terms can exist but these are not shown in the 
following equations. These missing terms can be categorized as disturbances. 
 
If the sign of the unity coefficient of the process output on the right side is negative (Equation 
F.1a), the process has negative feed back. As the process output changes, the negative feedback 
slows down and eventually halts the excursion of the process output at its new steady state when 
it balances out the effect of the process input and the disturbances. 
 

YXKdtdY pp −∗=∗ /t          (F.1a) 
 
The integration of this equation provides the time response of a change in the process output 
( Y∆ ) for a step change in the process input ( X∆ ). The step occurs at t = 0.  
 

XeKY pt
p ∆∗−∗=∆ − )1( / t          (F.1b) 
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If the process output does not appear on the right side (Equation F.2a), there is no process 
feedback. As the process output changes, there is no feedback to slow it down or speed it up so it 
continues to ramp. There is no steady state. The ramping will only stop when X is zero or 
balances out the disturbances. 
 

XKdtdY i∗=/           (F.2a) 
 

XtKY i ∆∗∗=∆           (F.2b) 
 
Often in the more important loops for concentration, pressure, and temperature control of large 
volumes, the time constant in equation F.1a is so large that the time to reach steady state is 
beyond the time frame of interest. Since these loops with small dead time to time constant ratios 
should be tuned with small Lambda factors (high controller gains) per Advanced Application 
Note 3, the controller only sees the first part of the excursion before the inflection point and 
deceleration by negative process feedback.  In this case the response is best characterized by a 
near integrating process gain calculated per Equation F.2c. 
 

ppnip KK τ/=            (F.2c) 
 
If the sign of the unity coefficient of the process output on the right side is positive (Equation 
F.3a), the process has positive feed back. As the process output changes, the positive feedback 
speeds up the excursion unless disturbances counteract the effect of the process input and output.  
 

YXKdtdY pp +∗=∗ /'t          (F.3a) 
 

XeKY pt
p ∆∗−∗=∆ )1( '/ t           (F.3b) 

 
Consider a mixed volume with a jacket and vapor space as shown in Figure F.4. There are liquid 
reactant feeds, gas feeds (sparged through the liquid and added directly to the vapor space), an 
outlet liquid flow, a vent gas flow, and a jacket coolant flow. There is normally multiple 
components interest. For example, consider liquid or gas acid and base reagent or reactant 
components (a, b) to produce primary and secondary liquid or gas products (c, d, e). Consider 
also there are typically water and nitrogen gas components (w, n). 
 
The ordinary differential equation for the accumulation of liquid mass as shown in Equation F.4a 
includes inlet flows added directly to the liquid volume ( iF∑ ), vapor flow rates from 
evaporation and vaporization ( vF∑ ), and an outlet liquid flow rate ( oF ). The liquid level 
depends upon density and cross section area of the liquid. Equation F.4a can then be 
reformulated to Equation F.4b to include the process variable of interest, liquid level ( lL ), in the 
derivative. 
 

ovio FFFdtdM −∑−∑=/          (F.4a) 
 

oviooo FFFdtLAd −∑−∑=∗∗ /)(ρ         (F.4b) 
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If we consider the density ( oρ ) to be a weak function of composition and therefore constant like 
the cross sectional area ( oA ) we can take these terms outside the derivative and divide through to 
get an equation for level ( oL ) in the form of F.2a. Now it is clearly evident that the integrating 
process gain ( ipK ) for manipulation of flows in or flow out is simply the inverse of the product 
of the liquid density and cross section area (Equation F.4d). 
 

[ ] [ ]oviooo FFFAdtdL −∑−∑∗∗= )/(1/ ρ        (F.4c) 
 

)/(1 ooip AK ∗= ρ           (F.4d) 
 
The ordinary differential equation for the accumulation of gas mass as shown in Equation F.5a 
includes inlet flows added directly to the gas volume ( iF∑ ), vapor flow rates from gas sparging, 
evolution, and vaporization ( vF∑ ), and an exit gas flow rate ( gF ). Equations of state such as 
the ideal gas law can be used to express this relationship for a given composition. Equation F.5a 
can then be reformulated to Equation F.5b to include the process variable of interest, gas 
pressure ( gP ), in the derivative. 
 

gvig FFFdtdM −∑+∑=/          (F.5a) 
 
[ ] gvigggg FFFdtTRVPd −∑+∑=∗∗ /)/()(        (F.5b) 

  
If we consider changes in the gas volume ( gV ) and gas temperature ( gT ) to be much slower than 
changes in the gas pressure ( gP ) and therefore relatively constant during the integration step we 
can take these terms outside the derivative and divide through to get an equation for pressure in 
the form of Equation F.2a. Now it is clearly evident that the integrating process gain ( ipK ) for 
manipulation of flows in or flow out is simply the product of the universal gas coefficient ( gR ) 
and the absolute gas temperature divided by the gas volume (Equation F.5d). This assumes a 
change in pressure does not significantly change the gas glow out of the volume, which is 
normally the case for a pressure drop across the vent valve that is large or critical. 
 

[ ] [ ]gvigggg FFFVTRdtdP −∑+∑∗= */)(/        (F.5c) 
 

[ ]gggip VTRK /)( ∗=           (F.5d) 
 
The ordinary differential equation (ODE) for the accumulation of energy as shown in Equation 
F.6a includes the effects of feed temperature, heat of reaction as a function of temperature, heat 
of vaporization, and heat transfer to the jacket. If we consider the specific heat capacity relatively 
constant and use the multiplicative rule of integration, we can express the differential equation in 
the generic form of Equation F.1a in terms of temperature to show the process feedback in 
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Equation F.6f, the final form of the ODE. The relative magnitude of the terms in the denominator 
of Equation F.6g determines the feedback sign.  
 

)()/()(/ jovvxxooroopiipo TTAUFHRHTTQTFCTFCdtdQ −∗∗−∗−∗+∗∆∆+∗∗−∗∑∗=  (F.6a) 
 

)/()/(/)(/ dtdTMCTdtMdCdtTMCddtdQ oopoopoopo ∗∗+∗∗=∗∗=     (F.6b) 
 

if FF ∑=            (F.6c) 
 

iiif FTFT ∑∗∑= /)(           (F.6d) 
 

oofpoop TFFCTdtMdC ∗−∗=∗∗ )()/(         (F.6e) 
 

[ ] oorfpjvvxxffpoop TAUTQFCTAUFHRHTFCdtdTMC ∗∗+∆∆−∗−∗∗+∗−∗+∗∗=∗∗ /)/(  (F.6f) 
 
For the manipulation of jacket temperature to control outlet temperature, the main process time 
constant ( pτ ) is (positive feedback if heat of feed and reaction exceeds product of heat transfer 
coefficient and area): 
 

[ ]AUTQFCMC orfpopp ∗+∆∆−∗∗= //)(τ        (F.6g) 
 
For the manipulation of jacket temperature to control outlet temperature, the process gain ( pK ) 
is: 
 

[ ]AUTQFCAUK orfpp ∗+∆∆−∗∗= //)(        (F.6h) 
 
For the manipulation of jacket temperature to control outlet temperature, the near integrating 
process gain ( nipK ) is: 
 

)(/)( opnip MCAUK ∗∗=          (F.6i) 
 
For the manipulation of feed temperature to control outlet temperature, the process gain ( pK ) is: 
 

[ ]AUTQFCFCK orfpfpp ∗+∆∆−∗∗= //)(        (F.6j) 
 
For the manipulation of feed flow to control outlet temperature, the process gain ( pK ) is: 
 

[ ]AUTQFCTCK orfpfpp ∗+∆∆−∗∗= //)(        (F.6k) 
 
For manipulation of jacket temperature, the additional small secondary process time constant 
associated with the heat capacity and mass of the jacket wall is: 
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[ ]AUMC wwp ∗∗= /)(τ           (F.6l) 

 
Any change in the temperature at the heat transfer surfaces or the feed inlet must be dispersed 
and back mixed into the volume. This process dead time ( pθ ) is the turn over time that can be 
approximated as the liquid inventory divided by the summation of the feed flow rate ( fF ), 
agitator pumping rate ( aF ), recirculation flow rate ( rF ), and vapor evolution rate or vapor 
bubble rate ( vF ). Since this turn over time is computed in terms of volumetric flow rates, the 
liquid mass and the mass flow rates are divided by their respective densities as shown in 
Equation F.6m. 
 

[ ]vvorafoop FFFFM rrrθ //)(/)/( +++=        (F.6m) 
 
If there is an injector (dip tube or sparger ring) volume, a change in composition at the nozzle 
must propagate by plug flow to the discharge points of the dip tube or sparger ring. The dead 
time for a feed flow ( 1F ) is the injector volume ( 1V ) divided by the injection mass flow ( 1F ) 
divided by its respective density ( 1ρ ).  
 

)/(/ 111 ρθ FVp =           (F.6n) 
 
The ordinary differential equation (ODE) for the accumulation of liquid reactant mass ( AM ) as 

shown in Equation F.7a includes the effects of feeds ( iF ) with a reactant mass fraction ( AiX ), 
reaction rate ( xR ), and outlet flow ( oF ). The feeds can be from raw material, intermediate 
products, recycle streams, or multi-stage reactors. If we use the multiplicative rule of integration, 
we can express the differential equation in the generic form of Equation F.1a in terms of 
concentration to show the process feedback in Equation F.7f, the final form of the ODE.  
 

AooxAiiA XFRXFdtdM ∗+−∗∑= )()(/        (F.7a) 
 

)/()/(/)(/ dtdXMXdtMddtXMddtdM AooAooAooA ∗+∗=∗=      (F.7b) 
 

if FF ∑=            (F.7c) 
 

iAiiAf FXFX ∑∗∑= /)(           (F.7d) 
 

AoofAoo XFFXdtMd ∗−=∗ )()/(         (F.7e) 
 

AofxAffAoo XFRXFdtdXM ∗+−∗=∗ )()/(        (F.7f) 
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For the manipulation of feed flow to control reactant concentration ( AoX ), the main process time 
constant ( pτ ) is: 
 

)(/ fxop FRM +=τ           (F.7g) 
 
For the manipulation of feed flow to control reactant concentration ( AoX ), the process gain 
( pK ) is: 
 

)(/ fxAfp FRXK +=           (F.7h) 
 
For the manipulation of feed flow to control reactant concentration, the near integrator gain ( iK ) 
is: 
 

oAfi MXK /=            (F.7i) 
 
For the manipulation of feed concentration to control reactant concentration, the process gain 
( pK ) is: 
 

)/( fxfp FRFK +=           (F.7j) 
 
The process dead times from turnover time and from feed injection are the same as computed in 
the section for temperature control (Equations F.6m and F.6n). 
 
 
Plug Flow Volumes 
 
For plug flow volumes where different streams are being combined, the process gain for 
controlling the temperature ( fT ) or composition ( AfX ) of the mixture (often a feed to a 
downstream equipment) can be computed by taking the derivative of Equations F.6d and F.7d 
with respect to the manipulated flow stream 1 ( 1F ) to give Equations F.9a and F.9b, respectively. 
In both cases, the process gain is inversely proportional to total flow ( iF∑ ). 
 

ifp FTdFdTK ∑== // 11           (F.9a) 
 

iAAfp FXdFdXK ∑== // 11          (F.9b) 
 
The process dead time for the manipulation of a flow for stream 1 ( 1F ) is the summation of the 
injection delay for steam 1 and the piping delay from the point of injection to the point of 
temperature or composition measurement. For plug flow the residence time, which is the second 
expression in Equation F.9c completely becomes dead time. 
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)/(/)/(/ 111 iipp FVFV ρρθ ∑+=         (F.9c) 
 
The process time constant is essentially zero for true plug flow. For a static mixer there is some 
back mixing, the residence time in Equation F.9c is split between a dead time and time constant 
per equations F.9d and F.9e.   
 

)/(/)/(/ 111 iipp FVxFV ρρθ ∑∗+=         (F.9d) 
 

)/(/)1( iipp FVx ρτ ∑∗−=          (F.9e) 
 
It is obvious from the above that both the process gain and dead time are inversely proportional 
to total flow.  
 
 
Controller Tuning 
 
The implication of the results can be best seen if Lambda is set equal to the total loop dead time 
( oθ ) resulting in Equation F.10a for the PID gain. If the open loop time constant ( oτ ) is large 
compared to the dead time, the process response is termed near-integrating and the ratio of the 
open loop self-regulating process gain ( oK ) to the time constant is used to approximate the open 
loop integrating process gain ( iK ) in Equation 5.10b. This PID gain is about ½ of the PID gain 
estimated by the Ziegler Nichols reaction curve method. 
 

 
oo

o
c K

K
θ

τ
∗

= *5.0           (F.10a) 

 

oi
c K

K
θ∗

=
1*5.0           (F.10b) 

 
The open loop time constant ( oτ ) in the numerator of Equation F.10a is the largest time constant 
in the loop wherever it occurs. Hopefully, the process is mixed well enough and the 
instrumentation is fast enough that the largest time constant is in the process ( po ττ = ) and not 
the automation system. A large time constant in the process slows down the disturbance and is 
desirable.  A large time constant in the measurement and final element is detrimental because it 
slows down the ability of the controller to see and react to disturbance, respectively. 
 
The open loop self-regulating process gain ( oK ) in the denominator is dimensionless. The 
process gain is actually the product of the manipulated variable gain, the process gain ( pK ), the 
gain of nonlinear process variables, such as pH (slope of the titration curve), and the controlled 
variable gain. For a loop that throttles a control valve, the manipulated variable gain is the slope 
of the valve’s installed characteristic.  For the primary loop of a cascade control system, the 
manipulated variable gain is the secondary loop set point span divided by 100%. The controlled 
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variable gain is 100% divided by the process variable span. Thus, changes in calibration span 
affect the computed controller gain, which provides robustness and a less oscillatory response. 
 
Finally, the dead time ( oθ ) in the denominator is really the total loop dead time, which is 
summation of the process dead time ( pθ ) plus all the small time lags and delays in the loop. 
While the names open loop time constant ( oτ ), open loop self-regulating process gain ( oK ), and 
total loop dead time ( oθ ) for the parameters in Equation F.10a are more definitive, nearly all of 
the control literature uses the terms process time constant, process gain, and process dead time 
indiscriminately. 
 
 
Nomenclature 
 
Process Parameters: 
 

=oA  cross sectional area of liquid level (m2) 
=A  heat transfer surface area (m2) 
=pC  heat capacity of process (kJ/kg∗oC) 
=wC  heat capacity of wall of heat transfer surface (kJ/kg∗oC) 
=aF  agitator pumping rate (kg/sec) 
=fF  total feed flow (kg/sec) 
=gF  gas flow (kg/sec) 
=iF  feed stream i flow (kg/sec) 
=oF  vessel outlet flow (kg/sec) 
=rF  recirculation flow (kg/sec) 
=vF  vaporization rate (kg/sec) 
=vH  heat of vaporization (kJ/kg) 
=xH  heat of reaction (kJ/kg) 
=oL  liquid level (m) 
=AM  component A mass (kg) 
=gM  gas mass (kg) 
=oM  liquid mass (kg) 
=wM  mass of wall of heat transfer surface (kg) 
=gP  gas pressure (kPa) 
=fT  total feed temperature (oC) 
=gT  gas temperature (oC) 
=iT  feed stream i temperature (oC) 
=oT  vessel outlet temperature (oC) 
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=t  time (sec) 
=oQ  total heat of liquid (kJ) 
=rQ  heat from reaction (kJ) 
=xR  reaction rate (kg/sec) 
=gR  universal constant for ideal gas law (kPa m3oC) 
=gρ  gas density (kg/m3) 
=iρ  stream i density (kg/m3) 
=oρ  liquid density (kg/m3) 
=vρ  density of vapor (kg/m3) 
=U  overall heat transfer coefficient (kJ/m2∗oC) 
=gV  gas volume (m3) 
=iV  injection (e.g. dip tube or sparger ring) volume (m3) 
=pV  piping volume (m3) 
=x  fraction of volume that is plug flow 
=AfX  total feed component A concentration (mass fraction) 
=AiX  feed stream i component A concentration (mass fraction) 
=AoX  vessel outlet component A concentration (mass fraction) 

 
Generic Terms: 
 

=X  process input (manipulated variable) (eu) 
=Y  process output (controlled variable) (eu) 

 
Dynamic Parameters: 
 

=cK  PID controller gain (dimensionless) 
=iK  open loop integrating process gain (1/sec) 
=ipK  integrating process gain (eu/eu) 
=oK  open loop self-regulating process gain (dimensionless) 
=pK  process gain (eu/eu) 
=nipK  near integrating process gain (eu/eu/sec) 

=pτ  negative feedback process time constant (sec) 

='
pτ  positive feedback process time constant (sec) 
=oτ  open loop time constant (sec) 
=pθ  process dead time (sec) 
=oθ  total loop dead time (sec) 
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