
SIMON FRIEDMANN, Functional Safety Consultant, 
and JULIAN OTT, Safety Engineer, Elektrobit, 

 https://www.elektrobit.com/ 

When we look at today’s focus of our safety efforts, we see 
that we mostly deal with the following topics:

• Functional safety
• Safety of the intended functionality (SOTIF)
• Safety in use (SiU)
• Security
• Active/passive safety systems
Functional safety and the ISO 26262 deal with safety-related 

systems that include one or more E/E systems (electrical and/
or electronic) and the corresponding hazards that come from 
a malfunction of these E/E safety-related systems. Safety of 
the intended functionality (SOTIF) refers to hazards resulting 
from functional insufficiencies of the intended functionality.

Safety in use (SiU) tries to cover hazards arising from the 
interaction of the safety-related system with a human opera-
tor. Security is a topic which has significant impact on safety, 
for example, when a safety-related system isn’t secure against 
unauthorized access from a third party, who then might be 
able to manipulate the system. Active and passive safety sys-
tems also try to prevent accidents or activate during a collision 
to protect the driver and passenger, respectively.

Looking at this list, the question arises sooner or later on 
whether we’re missing something in our combined safety ef-
forts. Something that poses a risk to humans but currently 
isn’t covered by the safety efforts that we invest.

1.	 Tesla Autopilot System (version 2.5)
As an example, let’s look at the Tesla autopilot system (ver-

sion 2.5) and a scenario where this system behaved unsafe-

ly. In normal conditions, the autopilot can detect both lane 
markings of the ego lane and steers the vehicle accordingly 
to stay at the center of the lane. However, at some point, the 
system may lose one or both lane markings and is obliged to 
react accordingly. This can be due to, for example, missing or 
intermittent lane markings on the road, or the system incor-
rectly interpreting the given lanes. 

In the case of only one detected lane marking, the system 
is designed to keep working with the remaining lane marking 
as the only reference for steering the car. Problems may arise 
when this lane marking leads the ego vehicle into entering a 
forbidden area.

The takeaway from this scenario is the fact that all technical 
components performed exactly as designed and tested. There 
was no component failure. No system was hacked from the 
inside or the outside that led to a component failure and/or 
misbehaving components. It wasn’t a problem of SiU since the 
driver is required to give the control to the autopilot system. 
Systems of active and passive safety (e.g., seat belts, ABS, ESP, 
etc.) can’t deal with this kind of issues as well. Regarding SO-
TIF, even with enough sensor performance for lane marking 
detection, the problem of incorrect interpretation of sensor 
data and a resulting false system belief of its environment is 
normally not part of SOTIF analyses.

There’s a gap in our safety efforts, focusing on the belief 
of the system about its environment rather than the failure 
of components. New problems often require a new analysis 
method to cover these topics, like the System-Theoretic Pro-
cess Analysis (STPA).

Why Current Safety 
Analysis Methods Fail at 
Covering Lethal System 
Designs
System-theoretic process analysis can help to cover current safety method issues, 
closing the gaps in safety efforts regarding the belief of the system about its environment, 
rather than just focusing on the failure of components and their performance.

☞LEARN MORE @ electronicdesign.com | 1

https://www.elektrobit.com/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


2.	 System-Theoretic Process Analysis (STPA)
When dealing with safety, our current procedures trained 

us to primarily look at component failures. Component fail-
ures can lead to unreliable but safe scenarios as well as to un-
safe scenarios (Fig. 1). 

For both cases, the safety community already has very 
powerful analysis methods at their disposal, e.g. FMEA, FTA, 
HAZOP, etc. It’s shown that due to our increased skills in per-
forming classic safety analyses such as FMEA and FTA, losses 
resulting from component failures have decreased significant-
ly over the last decades (Fig. 2).

Losses due to component interaction, though, have increased 
at the same time. In case of unsafe scenarios that aren’t a re-
sult of component failures but of losses, the former mentioned 
safety analysis methods are no longer sufficient. This is where 
the method of STPA can complete the toolbox of safety anal-
yses. STPA isn’t meant to replace one or more of the already 
established methods, but to extend the possibilities of analysis 
methods to also cover hazards that arise 
from a non-component failure.

3.	 Basics of STPA
The traditional hazard analysis is 

based on decomposition. A complex 
system is broken down into its single 
components, which in turn and isola-
tion are analyzed for failures. The results 
are then combined in order to under-
stand the behavior of the composed 
components. This approach requires 
that the components are independent of 
each other. 

If this assumption isn’t met, then the 
decomposition of a system into com-

ponents and their individual analysis will not reflect the final 
system behavior. This approach, however, proved very useful 
for the types of systems that were built a few years ago, and it’s 
still valid for certain properties of our systems today.

Looking at more recent systems, we see that the increased 
complexity led to a point where the approach of system de-
composition proves no longer sufficient. System decompo-
sition can’t identify behavior that’s not related to individual 
components, but rather arises from the interaction of those 
components. In these systems, problems don’t arise from com-
ponent failure—they’re due to component interactions/sys-
tem designs. System decomposition can’t find these problems. 

A new method is needed that closes those gaps. We need 
to start looking at the system as a whole and not focus on the 
separate parts/components. System theory does exactly that.

In system theory, a system is regarded as a whole, not as the 
sum of its parts. System theory deals with emergent proper-
ties, which are properties that aren’t the sum of components 

1. Component failures can lead to unreliable but safe scenarios as well as to unsafe scenarios. 

2. These losses can result from component failures and how they’ve decreased significantly 

over the last few decades. 

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


but emerge when the system components interact.
In 2012, Nancy G. Leveson introduced the System-Theoret-

ic Accident Model and Processes (STAMP)1, which is based 
on system theory as well as control theory. STAMP provides 
the theoretical foundation to STPA. In STAMP, “safety is treat-
ed as a dynamic control problem rather than a failure preven-
tion problem2.” However, STAMP isn’t an analysis method. It’s 
a “model or set of assumptions about how accidents occur2.” 

STPA is an analysis method based on STAMP. It uses the 
system-theoretic approach to analyze potential causes of ac-
cidents during development so that hazards can be eliminated 
or controlled.

4.	 Overview of the Method
The STPA consists of four consecutive steps (Fig. 3):
• Definition of the purpose of the analysis
• Modeling of the control structure
• Identification of Unsafe Control Actions (UCAs)
• Identification of loss scenarios

5.	 Step 1: Definition of the purpose of the analysis
This first step is to identify the system that’s supposed to 

be analyzed. For this purpose, it’s important to define system 
boundaries to explicitly state where the system responsibilities 
end—what is, per definition, the system and what belongs to 
the environment. 

It’s also important to define which kind of losses the analysis 
shall prevent. Is the focus on traditional safety goals like loss of 
human life and/or injury of humans, or also, for example, are 
economic factors a concern?

After the system boundaries are defined, the losses are iden-
tified. The definition of a loss reads as follows: “A loss involves 
something of value to stakeholders. Losses may include a loss 
of human life or human injury, property damage, environ-
mental pollution, loss of mission, loss of reputation, loss or 
leak of sensitive information, or any other loss that is unac-
ceptable to the stakeholders2.” As the definition states, in the 

beginning of the analysis, the stakeholders must define which 
losses they want the analysis to focus on.

Examples of losses for an adaptive-cruise-control (ACC) 
system include:

• L-1: Loss of life or injury to people
• L-2: Damage to the ego vehicle or objects outside the ego 

vehicle
• L-3: Loss of mission
• L-4: Loss of customer satisfaction

For the identification of losses, it’s important to note that 
losses should not reference individual components or specific 
causes.

Once the stakeholder losses are defined, system-level haz-
ards are identified. The definition of a system-level hazard 
reads as follows: “A hazard is a system state or set of conditions 
that, together with a particular set of worst-case environmen-
tal conditions, will lead to a loss2.” 

Whereas losses may include some parts of the environment, 
over which the system developer has no control, hazards only 
include parts of the system inside the system boundary, over 
which the system developer has control. Control is necessary 
since it’s the hazards that we’re trying to eliminate (or at least 
mitigate) by the design. System-level hazards identify “system 
states or conditions that will lead to a loss in worst-case envi-
ronmental conditions2.” 

When defining hazards, it’s crucial that hazards not be con-
fused with causes of hazards. Therefore, it’s again important 
that hazards don’t refer to individual components of the sys-
tem. The format of describing a hazard should be:

“<Hazard> = <System> & <Unsafe condition> & <Link to 
losses>”2

Hazards also need to fulfill three criteria:
• “Hazards are system states or conditions (not component-

level causes or environmental states)
• Hazards will lead to a loss in some worst-case environ-

ment

3. This is an overview of the STPA method. 

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


• Hazards must describe states or conditions to be prevent-
ed”2

Examples for hazards for an ACC system include:
• H-1: Ego vehicle does not maintain safe distance from 

traffic participants or objects [L-1, L-2, L-3, L-4]
• H-2: Ego vehicle enters dangerous area outside of the op-

erational design domain [L-1, L-2]
• H-3: Ego vehicle exceeds safe operating envelope for the 

environment [L-1, L-2, L-4]
Note the traces to the losses in the brackets behind the haz-

ards.
In the final action of step 1, system-level safety constraints 

are derived. The definition of a system-level safety constraint 
is: “A system-level constraint specifies system conditions or 
behaviors that need to be satisfied to prevent hazards (and ul-
timately prevent losses)2.”

System-level safety constraints can be derived by simply in-

verting the condition of the system-level hazard:
“<Safety constraint> = <System> & <Condition to enforce> 

& <Link to hazards>”2, or as a rule of thumb:
“<Safety constraint> = If <hazard> occurs, then <what 

needs to be done to prevent or minimize a loss>”2

What we will look at in steps 2 to 4 is a systematic identi-
fication of scenarios that can violate these system-level safety 
constraints.

6.	 Step 2: Modeling of the control structure
Step 2 models the corresponding control structure (Fig. 4).
The definition of the control structure reads as follows: “A 

hierarchical control structure is a system model that is com-
posed of feedback control loops. An effective control structure 
will enforce constraints on the behavior of the overall system2.” 
The control structure is composed of control loops (Fig. 5). 
The controller provides control actions to control the process 

6. The basic control structure of an ACC in this example consists of five control loops. 

4. Models can show the 

corresponding control 

structure. 

5. This diagram illus-

trates a generic control 

loop.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


of interest and its behavior. The control algorithm represents 
the decision-making process of the system. It’s the active part 
of the controller. The process model represents the knowledge 
of the system, the so-called belief of the system about its en-
vironment and system state. The controller builds its process 
model—its internal belief of the environment, based on feed-
back from the controlled system.

Problems can arise anywhere in the control loop. The belief 
of the system in the process model could be wrong. Control 
actions performed by the control algorithm might be unsafe 
in a specific situation. Feedback could be missing or incorrect.

When this control loop is applied to real systems, most sys-
tems consist of several nested control loops; Figure 6 illustrates 
a basic control structure of an ACC example. It consists of five 
control loops (driver – ACC unit; ACC unit – ego vehicle; 
driver – ego vehicle; ego vehicle – environment; driver – en-
vironment).

When a control structure is developed, it must be analyzed 

to determine who or which part of the system acts as a con-
troller over which process. After identifying the controller and 
controlled process, the control actions are derived. Every ac-
tion that the controller can execute on the controlled process 
is a control action and is introduced into the control structure 
model. In the same way, every feedback that is sent/given from 
the controlled process to the controller is modeled in the con-
trol structure in the same way (Fig. 6, again).

It’s important to note that as a possible point of confusion, a 
control structure isn’t a physical model—it’s a functional mod-
el. This way it’s possible to also display interactions that aren’t 
physical in nature; for example, the communication between a 
flight crew and an air traffic controller.

7.	 Step 3: Identification of Unsafe Control Actions 
(UCAs)

Step 3 identifies the unsafe control actions. Every control 
action that was identified in the control structure in Figure 6 

7. This model shows the brake command executed from the ACC system on the ego vehicle.

8. This table relates unsafe control actions.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


is analyzed to determine whether this control action can be 
unsafe in a certain scenario. For this analysis, a guide-word-
driven approach is used, such as in a HAZOP analysis. For an 
exemplary analysis, we look at the brake command executed 
from the ACC system on the ego vehicle (Fig. 7).

The guide words often used for the analysis are:
• Not providing causes hazard
• Providing causes hazard
• Too early, too late, out of order
• Stopped too soon, applied too long
These guide words can be adapted or changed. However, 

John P. Thomas often says, “these guide words cover all pos-
sible cases.” From our experience, in most cases, an adaption 
of the guide words isn’t necessary because this preset of guide 
words is usually sufficient for the analysis. The guide words are 
then applied to every control action to see whether in a certain 
scenario this control action can be unsafe (Fig. 8).

Every identified UCA is then linked to a hazard for trace-
ability. After identifying UCAs, controller constraints can be 
derived to avoid the unsafe control action. In general, UCAs 
can be inverted so as to directly result in controller con-
straints, which are defined as: “A controller constraint speci-
fies the controller behaviors that need to be satisfied to prevent 
UCAs.2” One example is the brake control action (Fig. 9).

8.	 Step 4: Identification of Loss Scenarios
The last step of the STPA focuses on the identification of 

loss scenarios. Here, the whole control loop is analyzed for 
causal factors (Fig. 10).

Two types of loss scenarios need to be considered:
8 Why would unsafe control actions occur (upward arrow 

in Figure 10)?
• Why would control actions be improperly executed or not 

executed (downward arrow in Figure 10)?
Why would unsafe control actions occur?
To determine how unsafe control actions may occur, the 

path of the UCA can be walked backwards. We analyze for 
each UCA what could have led to the unsafe control action. 
There are a few possibilities that can lead to UCAs:

Unsafe controller behavior:
• Failures related to the controller. Example: physical failure 

of the controller (power loss, etc.)
• Inadequate control algorithm. Example: a flawed imple-

mentation, the algorithm itself could be flawed, etc.
• Unsafe control input. Output from other controllers could 

be unsafe, leading the controller of the control structure to an 
unsafe behavior, too.

• Inadequate process model. Process models represent the 
internal belief of the con-
troller about its environ-
ment. Flaws in the process 
model occur when the 
controller’s belief does not 
match reality. This can be 
based on incorrect feed-
back, incorrect interpreta-
tion of feedback, unavail-
able feedback, etc.

Inadequate feedback 

10. Loss scenarios are identi-

fied in this model.

9. Controller restraints regarding the brake control action are provided in this table.

☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


and information:
• Feedback or information not received. Example: feedback 

that’s sent but not received, feedback isn’t sent, etc.
• Inadequate feedback received. Example: sensor feedback 

that’s inadequate, sensors that aren’t able or designed to pro-
vide needed feedback, etc.

Why would control actions be improperly executed or not ex-
ecuted?

Hazards can also arise without having UCAs, but with hav-
ing correct control actions not executed or improperly execut-
ed. Possibilities for this to happen include:

Scenarios involving the control path:
• Control action not executed. Example: a control action is 

sent but not received, actuator doesn’t respond, etc.
• Control action improperly executed. Example: a control 

action was received correctly but was responded to inad-
equately, control action isn’t sent but actuators behave as if it 
had been sent.

Scenarios related to the controlled process: 
• Control action not executed. Example: if the control ac-

tion was properly received, but the controlled process doesn’t 
respond.

• Control action improperly executed. Example: if the con-
trol action was properly received, but the controlled process 
responds inadequately.

9.	 Conclusion
If we now apply the introduced steps to our initial Tesla 

autopilot system (version 2.5) example, how could this have 
helped us to identify the problem? Figure 11 shows the steps 
of the STPA that could have led to the identification of the 
system behavior of entering an area outside the operational 
design domain.

The identified loss could have been, for example, “Damage 
to the ego vehicle or objects outside the vehicle.” Correspond-

ing hazards could have been, say, “Vehicle does not maintain 
safe distance from objects” and “Entering area outside opera-
tional design domain.” An unsafe control action could have 
been, for example, “Control unit provides in-adequate steering 
during AD mode.” The feedback to the controller could have 
been, for example, “Insufficient lane markings received.” The 
control algorithm itself is implemented as “If only one lane 
marking is detected, follow this lane marking.” This would be 
hazardous in the combination with the internal system belief 
in the process model “Incorrectly believes vehicle is following 
valid lane.”

We see that by applying the STPA on a system level, even 
without further technical knowledge of the system, potentially 
hazardous scenarios can already be identified and require-
ments for their mitigation or even elimination can be derived.

Simon Friedmann works as a Functional Safety Consultant 
for Elektrobit GmbH in Ulm. He joined the company in 2017 
and provides consulting services to OEMs around the world in 
all aspects of functional safety according to ISO 262622. Before 
Elektrobit, he gained 10 years of experience in the development 
of active medical devices, during which time, he worked in 
various positions, starting from software development through 
system engineering and requirements management, to project 
management and team lead.

Julian Ott works as a Safety Engineer for Elektrobit Auto-
motive GmbH in Munich. He joined the company in 2018 and 
gained experience as a safety engineer and safety manager in 
working on systems on vehicle- and component-level for as-
sisted, highly automated and autonomous driving in all safety 
aspects, including functional safety, SOTIF and safety in use.

References
1. Nancy G. Leveson, Engineering a Safer World, MIT Press, 

2012
2. Nancy G. Leveson, John P. Thomas, STPA Handbook, 

2018

11. This model shows the STPA on the Tesla Autopilot System.

☞LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

