
By CHIN BECKMANN, CEO, DSP Concepts,
http://www.dspconcepts.com

A
udio systems in consumer electronics and auto-
motive infotainment systems have become
increasingly complex because of consumers’ ris-
ing demand for premium audio experiences.

From perfectly tuned sound to flawless voice recognition,
consumer expectations have forced brands to develop new
product-differentiating audio features at a pace and scale

we’ve never seen before. And that includes real-time audio
subsystem design, where all of the audio processing must be
completed within a fixed time period to avoid drop-outs and
audio packet loss.

Developing real-time embedded audio systems involves a
combination of software development and porting onto one
or more hardware components, such as a system-on-a-chip

5 Development Platform
Keys for Easy Real-Time
Audio System Design
This article explores exactly what features to look for when selecting a development
tool for building real-time embedded audio systems.

1. This is a block diagram example of a real-time

audio system using a Linux OS. The diagram shows

I/O paths in a system with Voice UI, Playback, and

Connectivity Modules

☞LEARN MORE @ electronicdesign.com | 1

http://www.dspconcepts.com
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

(SoC), microcontroller, and specialized audio chips. It’s a
complex process that requires an audio development platform
with several mission-critical features. Here, we’ll explore
exactly what features to look for when selecting a development
tool for building real-time embedded audio systems.

1. A Flexible, Cross-Platform Design Environment
Audio development is a multidisciplinary process that

involves software engineering, algorithm building, digital
signal processing, and hardware engineering. Therefore, it’s
important to select a flexible development platform that allows
you to separate hardware design from software development
in the early prototyping phase, and then re-integrate them
seamlessly in the final design phase with minimal changes to
the code and optimal resource efficiency.

For example, designers should be able to develop real-time
audio algorithms on a PC and seamlessly switch to evaluation
hardware before switching to the end-target hardware. This
cross-platform approach enables developers to independently
prototype multiple features and designs on a PC before
committing to a specific design or hardware component for
the end product.

A traditional code-based approach to audio development is
tedious and slow, which is why real-time system development
must be flexible enough to develop, measure, tune, and
optimize new features without having to constantly rewrite
low-level code. Flexibility is also key for improving both
productivity and scalability of new audio features across
different platforms or product lines.

A great example of a flexible development platform is one
that offers a graphical user interface (GUI) with built-in audio
modules to enable rapid prototyping and facilitate testing new
features, because you don’t have to rewrite hundreds of lines of
code for each module. Every audio product will have checklist
features that the developers could use across multiple product
lines. Thus, developers should be able to reuse these features
where necessary, which unlocks more time to spend on
creating product-differentiating features.

This level of flexibility combined with a cross-platform
development environment, allows product makers to test
multiple features and designs through a GUI on a PC
before porting it to any hardware. It also allows multiple
teams to collaborate efficiently, which is critical given the
multidisciplinary nature of audio development. For instance,
you can have one person designing an equalizer component
while another team member works on speaker playback
processing, and everything will come together seamlessly.

2. Supports Efficient I/O Signal-Routing Management
The very first step in audio-system development is configuring
the signal pipeline so that the incoming audio stream is routed
correctly to the output stage. Before implementing the system’s
core audio-processing blocks, you should develop an audio
framework that can efficiently handle audio input/output
(I/O) and signal routing through the entire audio signal chain
within the constraints of the board-support package (BSP)
code provided by the hardware vendor.

Such a framework should define the real-time I/O

2. The level meters are shown in this simple

passthrough audio subsystem.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

initialization, memory allocation and instantiation,
tuning interface for debugging, and transport protocol to
communicate with the host interface. This framework is
critical to ensure a high-fidelity audio system, and it can vary
from platform to platform.

An example of different components in the framework is
provided for a Linux-based system with DSP Concepts’ Audio
Weaver platform as the development environment for a system
with TalkTo Voice UI and playback modules (Fig. 1). The
diagram shows the I/O routing for the different design blocks
in the system. Note that the Linux system shown in the block
diagram uses Advanced Linux Sound Architecture (ALSA),
whereas an embedded target might utilize the hardware’s
audio I/O digital memory access (DMA).

The audio framework makes it easy to verify the audio
signal path for appropriate sample rates, block sizes, signal
routing, etc., before building complex audio modules to be
integrated into the framework. The resulting audio system
should be inspected for signal-routing accuracy by testing it
at the passthrough stage. This passthrough test could just use
a simple sine wave as a test signal to identify any distortions
or dropouts in the system. The audio development platform
should provide the necessary tools such as inspectors, level
meters, etc., to easily debug the audio framework and identify
any routing or BSP integration issues in the early stages of
development.

An example screenshot of a simple passthrough system
during run-time is shown in Figure 2. Assuming that all the
I/O parameters are set correctly to passthrough a 1-kHz tone
at −10 dBFs input level, the level meters on the top and bottom
paths are expected to show no gain difference since the scaler
on each path is also set to 0 dB. The 6-dB offset between the
top and the bottom level meters (Meter1 shows −10 dB and
Meter2 shows −16 dB) indicates that there’s something wrong
in the BSP code or hardware integration setting.

Traditionally, developers debug this with breakpoints, write
code to measure output levels, or listen to recorded data at
intermediate steps to troubleshoot the issue—all of which

contribute significantly to design time and risk of project
failures. Instead, a sophisticated development tool should
provide the necessary level meters or inspectors to be able
to visually identify the issue immediately at the block level
(Fig. 2, again). Visually debugging is crucial for complex real-
time audio systems where multiple independent paths or
cross-functional components can easily complicate the debug
process.

3. Manages Real-Time Audio Priorities
Every audio product has two different functions happening

concurrently. The first is real-time audio processing, and
the second is the control interfaces working to enable this
processing. For example, a hands-free telephony module will
be running in real-time on an automotive system while the
control interface will simultaneously be updating the tuning
parameters of an automatic-gain-control (AGC) block within
the module.

Those two functions are very different, with real-time
processes needing to run at a sample rate—e.g., 8, 16, or 48
kHz—to avoid any audio pops or clicks while control processes
can run at much lower rates, say around 10 Hz to 100 Hz. For
this reason, real-time and control functions are able to run on
separate threads, so long as your audio development platform
can automatically prioritize tasks.

Similarly, real-time tasks that must run at a faster rate
should be prioritized over real-time tasks with a slower run
rate. Figure 3 shows an example of such an audio system.
The two sub-layouts run in their own processing path but
have different block sizes. The top layout runs a time-domain
subsystem at a 32-sample block size while the bottom layout
runs a frequency domain subsystem at a 64-sample block size,
but at half the rate of time domain subsystem.

BufferUp and BufferDown modules combine the two
sub-layouts with different block sizes. Real-time constraint
requires that the 64-sample block should also complete
processing at the same time as the 32-sample block. But in
practice, the 64-sample block needn’t complete execution

3. This is an example of a real-time audio system with multi-rate scheduling priorities.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

until the next 64-sample block data is available. Therefore,
the processing time of the 64-sample block should be split
between two 32-block processes.

Splitting that time must be achieved by using priority
settings in the development environment, essentially setting
the sub-block with the shorter block size to have a higher
priority than the longer block size. That’s why it’s imperative
your audio development platform can effectively prioritize
real-time tasks.

In general, the prerequisites to design a real-time audio
product design are:

• Audio threads should have a higher priority and it’s rec-
ommended that audio processing isn’t preempted.

• Latency should be fixed in the audio path; any change in
latency will result in poor performance.

• Clocks for audio blocks should be synchronized; any drift

or jitter will lead to decreased perfor-
mance over time.

CPU load over time could provide a
good indication of incorrect thread pri-
orities between concurrent tasks. Figure
4 shows peak CPU load over time of
an audio system where the Bluetooth
thread priority is set higher than the
real-time audio thread. The spike in
CPU load resulted in a loss in real-time
operation.

When thread priorities are reversed,
the average CPU load remains constant
over time (Fig. 5).

4. Provides Multicore Support
In many audio products, concurrent

tasks must run on different proces-
sor cores, or multiple cores within the same processor. This
requires using a development platform that supports multi-
threaded software development to support audio I/O, process-
ing, control, or host communication events running on their
own individual threads. Each of these threads could be run-
ning at its own sample rate and priority level. The available
central-processing-unit (CPU) clock speed and memory on
the processor, as well as the audio-processing requirements,
determine whether to use a single core or multiple cores.

For example, automotive OEMs traditionally rely on a mul-
tichip architecture that includes a main SoC for application
processing along with an external digital signal processor
(DSP) to implement audio-system processing. Historically,
SoC designs have lacked the resources required to implement
complex audio processing, so they had to be combined with
external DSPs.

The problem with relying on external
DSPs is that it requires significant de-
velopment expertise and coding profi-
ciency in the respective architecture.
External DSPs also often need addition-
al supporting components like random
access memory (RAM), flash memory,
or a microcontroller, which makes the
development process more complex,
time-consuming, and expensive.

Luckily for developers today, modern
SoCs such as the Arm Cortex-A and
Cortex-M series processors have start-
ed to offer significant improvements in
processing power to enable embedded
development at lower costs. We put this
to the test here at DSP Concepts by run-

ning some performance assessments, and

4. The peak versus average CPU plot shows load over time on an audio system with a Bluetooth

application incorrectly set to a higher priority than real-time audio.

5. Here, CPU load remains constant over time on a real-time audio system with real-time audio

set to a higher priority than the Bluetooth application.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

the results indicate that even a high-end, complex audio-pro-
cessing system can fit comfortably on a single-core SoC with
Linux OS.

5. Optimizes Performance and Debugs Errors in Real-
Time

Audio-system tuning is a significant investment for devel-
opment teams from both cost and time perspectives. Two key
areas of tuning are required to optimize design performance.

The first is performance tuning to meet acoustic bench-
mark requirements for a particular real-world use case. For
example, a smart speaker with Alexa built-in must meet cer-
tification requirements set by Amazon for basic or premium
voice-activation performance before it ever goes to market. In
this instance, developers should use a pre-qualified reference
design from a vendor with ample experience in that space to
reduce time-to-market. Once they determine what design to
use, they need to make sure their development platform pro-
vides a real-time tuning interface that lets them quickly view
and adjust tuning parameters to cut down on performance
tuning resources.

The other element of performance tuning is optimizing the
CPU and memory resource usage on the target platform. This
can be accomplished most efficiently by using a development
platform that has built-in, real-time profiling capabilities to
provide profiling information down to the block level. There-
fore, the resource can be optimized selectively.

And because of the complex nature of audio systems, it›s
critical to use a development platform that has real-time de-
bugging features built-in at the audio module level as well as
the overall system level. At the module level, it’s critical to
simultaneously view outputs of each function using built-in
tools such as inspectors and level meters so that the output

can be easily verified at each stage. Similarly, it’s important to
verify that debugging tools are automatically running against
both software and hardware. Therefore, you can immediate-
ly identify any flaws in CPU clock synchronization, latency,
mechanical design, microphone isolation, sensitivity match-
ing, etc., which could all impact real-time audio performance.
Building with tools that have robust debugging capabilities is
essential to avoid massive production delays and unexpected
costs.

Your Dev Platform Can Make or Break Your Product
Launch

It might seem daunting to not only look for all of these fea-
tures in a development platform for real-time audio-system
design, but also verify that they function as they should. How-
ever, the decision you make with regard to what development
platform to use can absolutely make or break your product
launch, so it’s important to choose wisely. Keep the aforemen-
tioned five capabilities in mind and you’ll be well on your way
to building a successful audio system that delivers an excep-
tional user experience.

Chin Beckmann co-founded and has led DSP Concepts since
its inception in 2003. Her leadership has resulted in Audio
Weaver, a platform disrupting audio product development,
and she has raised more than $25 million of venture financing.
Under her direction, Audio Weaver has continued to solve the
most difficult audio processing problems, resulting in design
wins among Tier 1 Automotive and Consumer OEMs globally.

Prior to DSP Concepts, Chin held software engineering roles
at Bose, Proteon, and Data General. Chin holds a BS degree in
Electrical Engineering from Boston University and an MBA from
Northeastern University. She is also pianist for the California
Pops Orchestra and is fluent in English, Spanish and Chinese.

☞LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

