By RICARDO JIMENEZ and KEVIN A. MARTINEZ,

E I ec.t ro n i C Instituto Tecnologico de Mexicali (ITM)
Design.

Microcontroller Efficiently
Measures Frequency and
Period

Take advantage of the PIC16’s signal measurement timer module for quick and
accurate measurements.

When you need to take accurate timing measure-
ments in hardware without overloading a microcon-
troller, the signal measurement timer module (SMT)
in the Microchip 16F1619 PIC microcontroller is
perfectly suitable for this application. The SMT mod-
ule captures features of a signal such as Period and
Frequency, among others. This design measures in-
put frequency signals within the range of 8 Hz to 10
MHz, and Period signals within the range of 0.1 ps to
125 ms. Figure I shows the prototype circuit.

The modules operation consists of reading data
of a 24-bit timer/counter and transferring it to three
registers called TMR, CPR, and PR. The SMT can
perform a variety of measurements such as Gated
Timer, Period and Duty Cycle Acquisition, High and
Low Measurement, Windowed Measurement, Gated
Window measurement, Time of Flight, Capture, 1. This is the board that was used with the 16F1619 PIC microcontroller to mea-
Counter, Gated Counter, and Windowed Counter. sure the period and frequency.

In this application, we use the SMT module in Pe-
riod and Duty Cycle acquisition mode. Figure 2 shows the electronic schematic for this design.

The Period and Duty Cycle mode has two modes of operation. The first works as single acquisition, which can take the timer/
counter contents. You can configure it to the rising edge of the signal to start reading, or go to acquisition and set the falling
edge as an interrupt. The second mode can read and save the counter value settings, the GO and Interrupt acquisition, by just
configuring the SMTxGO register. In this design, we're using the second mode. To understand how this counter and its registers
work, we need to check the timing diagram.

According to the datasheet’s timing diagram, we have a delay before starting the counter for synchronization purposes; the
time depends on the internal or external clock. We set in software a 50-ms delay after starting an acquisition. The setting code
for the SMT MODULE as a Period and Duty Cycle acquisition is:

SMT1CLK = %00000001; SMT Clock Selection Register (we select Fosc/4)

SMT1SIG = 0; Signal Input Select Register (we can use almost every pin as an SMT input; in this case, SMTSIG1 is selected
by default)

Those registers are for initialization only, we have to select the clock and its input port, even if they’re selected on the SMT
register. There are two control registers for the SMT module. We need to set both to take a measurement. The operation of those

05" LEARN MORE @ electronicdesign.com | 1

https://sourceesb.com/microchiptechnology/distributors-and-vendors
https://sourceesb.com/microchiptechnology-parts-starting-with-pic16F1619
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

5V 5y
1

Vdd RB4 13 12 DB4 Vee A
12 14
15 SV RBS DBS5 2. Electronic schematic for the period/
Input signal RBé Il 1 DBé frequency measurements based on the
RB7 10 16 DB7 LCD 2x20 16F1619 PIC microcontroller.
19
RAO 6 RS
1
RA1 8 8 EN
PIC16F1619
22 oF vss RW K cv
2 [3 |7 | 2 l
Al\ﬁ I XTAL
|z 3 e 5V
Hoan oscz 20 Lok
22 pF 5MQ Vs __l = pot

bits is described as follows (the STxCON is the control register):
SMT1CONO:
BIT 7: Enables the SMT module; if this bit is set to 0, the entire SMT is disabled.
BIT 6: Unimplemented.
BIT 5: Stops the counter; it’s used for interrupt options.
BIT 4: Window input polarity for measurements at rising or falling edge.
BIT 3: Input signal polarity; enables measurements at rising or falling edge.
BIT 2: Clock input polarity; increments counter at rising or falling edge.
BIT 1 & 0: SMT module prescaler

SMT1CONI1:

BIT 7: Starts to get data from the counter clock; if disabled, it doesn’t count.

BIT 6: This bit lets us choose between two methods of operation: single measurement or take and repeat. For the single mea-
surement, you have to select the polarity options to take measurements at the rising edge or stop at the falling edge.

BITS 5 & 4: Unimplemented.

BITS 3 to 0: The operational mode is assigned by setting those bits.

As you can see in the Code Listing below, we're using a 20X2 LCD display to show period measurements. These measurements
can’t be read directly, because the value in the counter is a Frequency. Thus, it must be converted to Period. Then we set the clock
to 16 MHz with an external crystal, and in the SMT module we set the Prescaler value to 4, and the period scale to 4. We have
an SMT clock of 1 MHz; to determine the time we get:

1 1

T=>=_— = 0.000001s = 1lus (1)
f 1000000

Thus, we have lus for each clock pulse, that means if we have a period of 1ms we should have 1000 pulses with a constant
period. And to get the frequency we use Equation 2:

1 1
f'=7 = sooooors ~ 1000 MHz)
To determine the quantity of pulses, we need to divide SMTF osc by the Frequency:

PULSE = LTFF osc (3)

As you can see, those values are floating or of the double variable type. We can’t use decimal numbers in the PBP3 compiler,

05" LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

so we need to look for an equation to solve this. In this case, we read 250 Hz in the SMT module with a 1-MHz internal clock.
That means with Equation 1, the period will be 4000 pulses—here, we know that 1 us equals to 1 pulse, which is equivalent to 4
ms. If the clock is set to 4 MHz, we get 16000 pulses, which is a 16-bit number.

For period measurements each pulse is 250 pus, which means we have to multiply the value of the SMT pulses data by a con-
stant. Then we would get 400000. This isn’t a 16-bit number, so we need a multiplying factor. The number near to a real binary
number is 25—Dbecause of the 250 ps in each pulse, this number will be our multiplying factor, which leads to Equation 4:

A = 16000 = 25 = 400000 (4)

By using the DIV32 command in PBP3, we can take all 31 bits from the internal result on an internal variable of the multiply
function that operates as a 16- x 16-bit and divide by 100. Then we get Equation 5:

16000%25
Ttot = ——

= 4000 (5)

Now we have a valid 16-bit number that represents the reading in milliseconds. That means, we have digit 4 and digit 3 as
integer numbers and the other for floating values. However, this is valid specifically for this configuration.

Now we must separate the different values of period into scales. We do this in four scales. For example, in the first scale, we
configure the SMT clock using the Fosc/4 and the prescaler to 1:8; then we have SMTFosc equal to 500,000 Hz. If we use Equa-
tion 1, we would get each pulse equal to 2 ps. Due to the maximum 16-bit pulses of period measurement, we must set a scale
value, in this case, from 8 to 100 Hz.

To test it, we apply a 50-Hz input signal from an external pulse-width modulation (PWM) into the read pin. Then, via Equa-
tions 1 and 3, we get 10000 pulses into the data register in the SMT module. To know the period value, we multiply the pulses
by 2 us. Therefore, we look for our multiply factor; in this case, the nearest real number for 2 ps is 2.

Now we have the Period value:

A = 10000 Pulses = 2 = 20000 (6)

And using the Div32 Function:

100002
10

Ttot =

= 2000 (7)

Now that we have a regular 16-bit number, we separate each digit and multiply it by its real value. This number gives
the Period value in milliseconds. Subsequently, we need to calculate the Frequency based on the Period measurement. We take
the value from the data register—we got 10000 pulses—and then, using Equation 3, we solve for Frequency:

B SMTFosc _
" PULSES

S500000H=z — 50Hz (8)
10000

We proceed to divide by 10 to take a lower number, 1000, and divide by the nearest 16-bit number factor related to the SMT-
Fosc, which in this case is 50000:

Scale (min - max] Measurement Period (1/f) Ttot from equations | Results from | Measurement
pulses equation units
8 Hz- 62500 0.125| Ttot=(Pulses*2)/10 12500 ms
100 Hz 5000 0.01 1000 ms
9900.99 0.0099| 1ms = 1000 pulses 99.009 ms
1001.001 0.001001 10.01 ms
1 kHz - 8000 0.0005 | Ttot=(Pulses*625)/100 50000 us
999 KHz 161.61 1.0101€L05 1010.101 Us
1 MHz - 16 0.000001 Ttot= Pulses*625 10000 Hs
10 MHz 1 0.0000001 1000 Hs

Table 1: SMT module and Microcontroller configuration for each scale.

05" LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

SMT Module 8 Hz to 100 Hz 101 Hz to 999 Hz 1 kHz to 999 KHz 1 MHz to 10 MHz
FreqOSCint 16000000 Hz 16000000 Hz 16000000 Hz 16000000 Hz
0SCscaler / 4 4 1 1
FreqSMT 500000 Hz 1000000 Hz 16000000 Hz 16000000 Hz
Period rato 0.000002 sec 0.000001 sec 6.25E-08 sec 6.25E-08 sec
Period scaled |/ 8 4 1 1

Table 2: Range of measurements for Period and Frequency results from equation and measurement unit.

_ SMTFose

F S500000H=z,/10
~ PULSES

10000,/10

= 50Hz 9)

The result is 50 Hz. We can repeat this process for each scale based on its SMTFosc and Period Factor.
The complete software code is presented in the Code Listing below.

Table 1 shows the SMT module configuration for each scale. Table 2 shows a summary of input frequencies with their respec-
tive results.

Ricardo Jimenez holds a Master’s degree in Electronics Engineering. He is the author of several Lab Notebooks using PIC Micro-
controllers.

Kevin A. Martinez is pursuing his Electronics Engineering degree at ITM.

Code Listing: Software Code for Period and Frequency Measurements

Name :SMT Module
“* Authors : Ricardo Jimenez and Kevin Adrian Martinez
“* Date 7/06/2020
Version : 1.0
* Notes : PBP3.1 Compiler
% .
;--- PIC16F1619 CONFIGURATION
#CONFIG; Starting Configuration bit setting.
__config_CONFIG1, _FOSC_HS ; setting FOSC HS mode on.
#endconfig ; end of configuration mode.
TRISA = %00100000; RAS5 set as input
TRISB = 0; PORTB set as output
TRISC = %00000010; RBI1 set as input
LATA = 0: LATB = 0: LATC = 0; Clearing all Latches
ANSELA = 0: ANSELB = 0: ANSELC = 0; All inputs set to digital
OSCCON = %01111000; 16.000 MHZ Xtal
OSCSTAT = %00010001;
DEFINE OSC 16;
x var word: CPRL var WORD: CPRH VAR WORD: CPRU var word: DO VAR BYTE: D1 VAR BYTE: D2 VAR BYTE: D3 VAR
BYTE: D4 VAR BYTE;
err var byte: T var word: A var word: b var word:c var word: Ttot var word: Tvalue var word;
CTOT VAR WORD:Period var word:fqz var word: CI VAR WORD:C2 VAR WORD:C3 VAR WORD:C4 VAR WORD: C0
var word ;
OPTION_REG.7=0; PORTB PULL UP resistors ENABLED
DEFINE adc_bits 10;

05" LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

define adc_clock 3;
define adc_sampleUs 50;

;RC5PPS = %00001100; SETTING CCP1 AS AN OUTPUT AND ENABLE IT
;CCP1CON = %10001100; PWM mode selection and CCPx enabled

;PR2 = 249; Value obtained from equation

;T2CON = %11000000; enabling timer 2

;CCPTMRS = %11111100; CCP1 IS BASED OFF TIMER 2

;CCPRIL = %11110100; VALUE obtained from equation

;CCPR1H =%00000001; VALUE obtained from equation

DEFINE LCD_DREG PORTB;
DEFINE LCD_DBIT 4;

DEFINE LCD_RSREG PORTA;
DEFINE LCD_RSBIT 0;

DEFINE LCD_EREG PORTA;
DEFINE LCD_EBIT 1;

DEFINE LCD_BITS 4;

DEFINE LCD_LINES 2;

DEFINE LCD_COMMANDUS 1500
DEFINE LCD_DATAUS 45;

LCDOUT $FE,$28; $28 FUNCTION SET, 4 BITS

LCDOUT $FE,$10; $10 SHIFT DISPLAY

LCDOUT $FE,$0C; $0C DISPLAY ON

LCDOUT $FE,$06; $06 ENTRY MODE SET

;setting STM module for period measurement

SMT2SIG = 0; SIGNAL INPUT SELECT REGISTER, We use SMTSIG1 as input by default

;clearing variables
D0 =05

D1 =0;

D2 =0

D3 =0

D4 =0;

fqz = 0;

T=0

;MAIN LOOP

RPT:

gosub FREQAUTO; this is the label where we calculate frequency.

goto RPT;

SMTRead:

SMT2CONI1 = %11000010; BIT7 as ‘1’ for data acquisition, bit 6 to repeat acquisition,
; bits 0-4 for SMT operation mode, period and duty cycle

STAY: IF SMT2STAT.0==1 THEN GOTO STAY;

pause 50; this pause is for SMT sync purposes

05" LEARN MORE @ electronicdesign.com | 5

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

CPRL= SMT2CPRL; data is captured for first 8 bits
CPRH= SMT2CPRH*256; data is captured for the next 8 bits
CPRU= SMT2CPRU; data is captured for the next 8 bits

Period= CPRL+CPRH;

DO0= Period DIG 0;

D1= Period DIG 1;

D2= Period DIG 2;

D3= Period DIG 3;

D4= Period DIG 4;

SMT2CON1.7 = 0; BIT7 as ‘0’ for interrupt data acquisition.

return

LCDSHOWHZ:

LCDOUT $FE,$80 SMT MODULE ¢ $80 FIRST LINE LOCATION

LCDOUT $FE,$C0,T= “DEC Ttot,mS F="dec fqz,’Hz”; $C0 SECOND LINE LOCATION
pause 1000;

goto RPT;

RETURN;

LCDSHOWHZ2:

LCDOUT $FE,$80 SMT MODULE ¢ $80 FIRST LINE LOCATION

LCDOUT $FE,$C0,T="DEC D4, DEC D3,”,DEC D2,DEC D1, ’ms F=",dec fqz,’Hz”; $C0 SECOND LINE LOCATION
pause 1000;

goto RPT;

RETURN;

LCDSHOWKHZ:

LCDOUT $FE,$80 SMT MODULE ¢ $80 FIRST LINE LOCATION

LCDOUT $FE,$C0,T="DEC Ttot,’ms F="dec fqz, KHz”; $C0 SECOND LINE LOCATION
pause 1000;

goto RPT;

RETURN;

LCDSHOWMHZ:

LCDOUT $FE,$80 SMT MODULE ¢ $80 FIRST LINE LOCATION

LCDOUT $FE,$C0,T="DEC Ttot,’uS”, “F="dec fqz”MHz”; $C0 SECOND LINE LOCATION
pause 1000;

goto RPT;

RETURN;

LCDSHOWMHZ2:

LCDOUT $FE,$80 SMT MODULE ¢ $80 FIRST LINE LOCATION

LCDOUT $FE,$C0,T="DEC Ttot,’nS”, “F="dec fqz”MHz”; $C0 SECOND LINE LOCATION
pause 1000;

goto RPT;

RETURN;

FREQAUTO:; 8Hz TO 100Hz
SMT2CLK = %00000001; SMT CLOCK SELECTION REGISTER, set to Fosc/4
SMT2CONO = %10000011; SMT CONTROL REGISTER, bit7 set as ‘1’ enables the SMT function and prescaler 1:8
gosub SMTRead;
T = (D4*10000) + (D3*1000) + (D2*100) + (D1*10) + DO
if T < 5000 then gosub FREQAUTO2
A = Period * 2

05" LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Tvalue = div32 10

C2= Tvalue DIG 2;

C3= Tvalue DIG 3;

C4= Tvalue DIG 4;

Ttot = (C4*10000) + (C3*1000) + (C2*100)

A =T/10;

fqz = 50000/A

if CPRU != 0 then

gosub errSHOW;

endif

gosub LCDSHOWHYZ;
return;

FREQAUTO?2:; 101--Hz TO 999Hz
pause 50
SMT2CLK = %00000001; SMT CLOCK SELECTION REGISTER, set to Fosc/4
SMT2CONO = %10000010; SMT CONTROL REGISTER, the bit7 set as ‘1’ enable the SMT function and prescaler 1:4
gosub SMTRead
T = (D4*10000) + (D3*1000) + (D2*100) + (D1*10) + DO
if T < 1000 then gosub FREQAUTO3
b=10000;
c=100;
A =Db*c;
fqz = DIV32 T
if CPRU != 0 then
gosub errSHOW;
endif
gosub LCDSHOWHZ2;
return;

FREQAUTO3:; 1-KHz TO 999-K Hz
SMT2CLK = 0; SMT CLOCK SELECTION REGISTER, we are using the Fosc
SMT2CONO = %10000000; SMT CONTROL REGISTER, the bit7 set as ‘1’ enable the SMT function and prescaler 1:1
gosub SMTRead
T=15984;
T = (D4*10000) + (D3*1000) + (D2*100) + (D1*10) + DO
if T < 161 then gosub FREQAUTO4
A = Period * 625 ; 1/16Mhz
Tvalue = div32 100; Period value in uS
C2= Tvalue DIG 2;
C3= Tvalue DIG 3;
C4= Tvalue DIG 4;
Ttot = (C4*10000) + (C3*1000) + (C2*100)
b=16000;
c=10
A =Db*c;
fqz = DIV32 T;
if CPRU != 0 then
gosub errSHOW;
endif
gosub LCDSHOWKHZ
return;

05" LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

FREQAUTO4: ; 1.000-MHz TO 10.000-MHz

SMT2CLK = 0; SMT CLOCK SELECTION REGISTER,
we are using the Fosc

SMT2CONO = %10000000; SMT CONTROL REGISTER,
the bit7 set as ‘1’ enable the SMT functionv and prescaler 1:1

gosub SMTRead

T = (D4*10000) + (D3*1000) + (D2*100) + (D1*10) + DO

if T < 1 then gosub errSHOW ;

Tvalue = Period * 625; Period value in uS

Cl= Tvalue dig 1;

C2= Tvalue DIG 2;

C3= Tvalue DIG 3;

C4= Tvalue DIG 4;

Ttot = (C4*10000) + (C3*1000) + (C2*100) + (C1 * 10)

fqz = 160/T;

if CPRU != 0 then

gosub errSHOW;
endif
gosub LCDSHOWMHZ2;
return;

errfSHOW:

LCDOUT $FE,$80,” SMT MODULE *; $80 FIRST LINE
LOCATION

LCDOUT $FE,$C0,” OUT OF RANGE “ $C0 SECOND
LINE LOCATION

pause 4000;

RETURN;

End

05" LEARN MORE @ electronicdesign.com | 8

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

