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5 Steps to Improved
Power-Supply Design
Using Semi-Automation

Today'’s architecture tools for power-supply design have become very sophisticated
and powerful enough to meet the demands of complex systems, yet are now easy
enough to use for designers at any and all levels of expertise.

esigning the correct power source is essential and

complex since there’s no one typical application.

While total automation of power-supply design has

yet to be achieved, a comprehensive range of semi-
automated tools are available today. This article details the
use of semi-automated design tools through five critical
steps of the power-supply design process. These tools can be
valuable to both the novice and expert power-supply design
engineer.

Power-Supply Design Step 1: Creating the Power-
Supply Architecture

Creating a suitable power-supply architecture is a decisive
step in power-supply design. This step becomes more com-
plex by increasing the number of needed voltage rails. At
this point, the decision is made as to whether and how many
intermediate circuit voltages need to be created.

Figure 1 shows a typical block diagram of a power sup-
ply. The 24-V supply voltage of an industrial application is
shown on the left. This voltage must be converted now into
5V,3.3V,1.8V,1.2V,and 0.9 V with corresponding cur-
rents. What’s the best method for generating the individual
voltages?

Selecting a classic step-down switching (buck) converter
makes the most sense for converting from 24 V to 5 V. How-
ever, how do you generate the other voltages? Does it make
sense to generate the 3.3 V from the 5 V already created, or
should we convert to 3.3 V directly from 24 V? Answering
these questions requires further analysis. Since an impor-
tant property of a power supply is the conversion efficiency,
keeping the efficiency as high as possible is vital when se-
lecting the architecture.

If intermediate voltages, such as 5V in the example shown
in Figure 1, are used to generate additional voltages, the en-
ergy utilized for the 3.3 V must already pass through two
conversion stages. Each conversion stage has only limited
efficiency.

For example, if a conversion efficiency of 90% is assumed
for each conversion stage, the energy for 3.3 V, which has
already passed through two conversion stages, only has an
efficiency of 81% (0.9 x 0.9 = 0.81). Can such rather low ef-
ficiency be tolerated in a system or not? It depends on the
current required from this 3.3-V rail.

If current of only a few milliamps is needed, the low ef-
ficiency might not be a problem at all. For higher currents,
though, this lower efficiency might have a greater effect on
the overall system efficiency and consequently represent a
big disadvantage.

From the considerations just mentioned, however, you
can’t draw the general conclusion that it’s always better to
convert directly from a higher supply voltage to the lower
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1. Creating a power-supply architecture.

I LEARN MORE @ electronicdesign.com | 1


http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Power 1

24V 640 43mA 2,47A

sV
Converter 1
o
Loss1=137TW

i
I

24V 570,99mA
P=1537TW

Eff1=90%

Summary Report

Total Pin = 15,37W
Total Pout = 13,1TW
Total Ploss = 2,27W

1,8V 500mA

33vaa
> 3 ol
5V 147A 2A 2

Loss1=0,73W

oW 2. Shown are two com-
peting architectures with
the efficiency calculation

Eff1=90% for each.

3 Converter 3
24V 41,6TmA o

Total Efficiency = 85,23%

0ss1=0,1W Eff1=90%

1.2V 500mA

[
it

Converter 4
ed
Loss1=66,67TmW Eff1=90%

24V 27,78mA

Power 1

24V 606,48mA 1A

500mA 4

sV
Converter 1
e
Loss1=0,56W

1
1

24V 231,48mA|
P=14,56W

Eff1=90%

33V2A

Summary Report

I
l

Converter 2
24V 305,56mA o

Total Pin = 14,56W
Total Pout = 13,TW
Total Ploss = 1,46W

Loss1=0,73W Eff1=90%

1,8V 500mA

Converter 3
24V 41,67TmA. o

1

Total Efficiency = 90%

0ss1=0,1W Eff1=90%

1,2V 500mA

500mA 3

24V 27,78mA

1
|

Converter 4
=4

Loss1=66,67mW Eff1=90%

output voltage in one step. Voltage converters that can han-
dle a higher input voltage are usually more expensive and
have a reduced efficiency when a greater difference exists
between the input voltage and the output voltage.

In power-supply design, the most efficient way to find-
ing the best architecture is to use an architecture tool. For
instance, the LTpowerPlanner from Analog Devices helps
accelerate the evaluation of different architectures so that
developers can quickly explore different options and their
tradeoffs.

Finalizing the Specification

Finalizing the specification is extremely important in
power-supply design. All additional development steps de-
pend on the specification. Frequently, the precise require-
ments of the power supply are unknown until the rest of the
electronic system is completely designed. This usually re-
sults in increasing time constraints on power-supply design
development. It also often happens that the specification is
changed in a later development stage.

For example, if an FPGA requires additional power in its
final programming, the voltage for a digital signal proces-
sor (DSP) must be reduced to save energy, or the originally
intended switching frequency of 1 MHz must be avoided
because it’s coupled into the signal path. Such changes can
have very serious effects on the architecture and, in particu-
lar, on the circuit design of the power supply.

A specification is usually adopted at an early stage. This
specification should be designed to be as flexible as possible
so that it’s relatively easy to implement any changes. In this

effort, selecting versatile integrated circuits is helpful. Work-
ing with development tools is particularly valuable because
they enable the power supply to be recalculated within a
short time. In this way, specification changes can be imple-
mented more easily and, above all, more quickly.

The specification includes the available energy, the input
voltage, the maximum input current, and the voltages and
currents to be generated. Other considerations include size,
financial budget, thermal dissipation, electromagnetic-com-
patibility (EMC) requirements (including both conducted
and radiated behaviors), expected load transients, changes
in the supply voltage, and safety.

A tool like LTpowerPlanner provides the necessary func-
tions for creating a power-supply system architecture, allow-
ing for rapid concept development. An input energy source
is defined and then individual loads, or electrical consum-
ers, are added. This is followed by adding individual dc-dc
converter blocks. These could be switching regulators or
low-dropout (LDO) linear regulators. All components can
be assigned their own name. An expected conversion efhi-
ciency is stored for efficiency calculations.

Rapid concept development offers several benefits. First,
a simple architecture calculation can identify the configura-
tion of the individual conversion stages most beneficial for
overall efficiency. Figure 2 shows two different architectures
for the same voltage rails. The architecture at the bottom has
an overall efficiency somewhat higher than that of the ar-
chitecture at the top. This property isn't evident without a
detailed calculation. When using LTpowerPlanner, this dif-
ference is immediately revealed.
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3. Searching for suitable switching-regulator ICs with LTpowerCAD.

Another benefit is that rapid prototyping tools provide

well-organized documentation. The graphical user interface

of LTpowerPlanner, for example, provides a sketch of the

architecture, a visual aid that can help broaden the scope
of discussions with coworkers as well as document the de-
velopment effort. Documentation can be stored either as a
paper hard copy or a digital file.
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Power-Supply Design Step 2: Selecting ICs for Each

DC-DC Converter

When designing power supplies today, an integrated cir-

cuit is used rather than a discrete circuit with many separate
components. A multitude of different switching-regulator
ICs and linear regulators are available in the market. All of
them are optimized for one specific property. Interestingly,

all integrated circuits are different and can be interchanged
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4. The LTpowerCAD calculating tool for a power supply.
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only in the rarest of cases.

Thus, selecting the integrated circuit becomes a very im-
portant step. Once selected, the properties of that circuit are
fixed for the rest of the design process. Later, if it turns out
that a different IC is better suited, the effort to incorporate
a new IC begins anew. This development effort can be very
time-consuming, but it can be easily mitigated with the use
of design tools.

Using a tool is critical for effectively selecting the inte-
grated circuit. The parametric search on analog.com is suit-
able for this task. Searching for components within LTpow-
erCAD may be even more productive. Figure 3 shows the
search window.

To use the search tool, only a few specifications need to be
entered. For example, you may enter the input voltage, out-
put voltage, and required load current. Based on these speci-
fications, the tool generates a list of recommended solutions.
Additional criteria can be entered to further narrow down
the search. In the “Features” category, for instance, you can
select from features such as an enable pin or galvanic isola-
tion to find an appropriate dc-dc converter.

Power-Supply Design Step 3: Circuit Design of
Individual DC-DC Converters

Step 3 is the circuit design. The external, passive compo-
nents need to be selected for the chosen switching-regulator
IC. The circuit is optimized in this step. Usually, it requires

studying a datasheet thoroughly and performing all of the
required calculations. This step in power-supply design can
be drastically simplified by design tools, and the results can
be further optimized.

One of the main differences between calculation tools
and simulators can be seen during this design stage. A cal-
culation tool like LTpowerCAD is able to recommend, in a
very short time, the optimized external components based
on the specification entered. The conversion efficiency can
be optimized, and the transfer function of the control loop
is calculated. This facilitates implementing the best control
bandwidth and stability.

After opening a switching-regulator IC in LTpowerCAD,
the main screen displays the typical circuit with all of the
necessary external components. Figure 4 shows this screen
for the LTC3310S as an example. It’s a step-down switch-
ing regulator with an output current of up to 10 A and a
switching frequency of up to 5 MHz. The yellow fields on the
screen show the calculated or specified values. The user can
configure settings using the blue fields.

Selecting the External Components

A calculation tool reliably simulates the behaviors of a real
circuit as calculations are based on detailed models of ex-
ternal components, not just ideal values. Specifically, these
tools include a large database of integrated-circuit models
from several manufacturers. For instance, the equivalent se-
ries resistance (ESR) of a capacitor and the core losses of a
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5. List box for different output capacitors for the LTC3310S.
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6. Efficiency calculation and thermal response of the circuit.
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7. Setting the control loop with LTpowerCAD.
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Once the optimal external components have been se-
lected, the conversion efficiency of the switching regulator
is checked using the “Loss Estimate & Break Down” button.
A precise diagram of the efficiency and losses is then dis-
played. In addition, the junction temperature reached in the
IC can be calculated based on the thermal resistance of the
housing. Figure 6 shows the page of calculations for the con-
version efficiency and thermal behavior.

Once you're satisfied with the circuit response, you can
move to the next set of calculations. If the efficiency isn’t sat-
isfactory, the switching frequency of the switching regulator
can be changed (see left side of Figure 6), or the selection of
the external coil can be changed. The efficiency is then recal-
culated until a satisfactory result is achieved.

Optimizing the Control Bandwidth and Checking the
Stability

After selecting the external components and calculating
the efficiency, the control loop is optimized. The loop must
be set so that the circuit is reliably stable, not prone to os-
cillations or even instability while providing a high band-
width—that is, the ability to respond to changes of the input
voltage and, in particular, to load transients. The stability
considerations in LTpowerCAD can be found in the “Loop
Comp. & Load Transient” tab. In addition to a Bode plot and
curves on the response of the output voltage following load
transients, there are many setting options.

The “Use Suggested Compensation” button is the most

[ET Input EMI Filter Design

important. In this case, the optimized compensation is em-
ployed; the user needn’t dive deeply into control engineering
to adjust any parameters. For example, Figure 7 shows the
setup of a control loop.

Stability calculations are performed in the frequency do-
main and are very fast, much faster than simulations in the
time domain. As a result, parameters can be changed on a
trial basis and an updated Bode plot is provided in a few
seconds. For a simulation in the time domain, this would
take many minutes or even hours.

Checking the EMC Response and Adding Filters

Depending on the specification, additional filters may be
necessary at the input or output of the switching regulator.
This is where less-experienced power-supply developers, in
particular, face large challenges. The following questions
pop up: How must the filter components be selected to en-
sure a certain voltage ripple at the output? Is an input filter
necessary and, if so, how must this filter be designed to keep
conducted emissions below certain EMC limits? In this re-
spect, interaction between the filter and the switching regu-
lator must not result in instability under any circumstances.

Figure 8 shows the Input EMI Filter Design, a sub-tool in
LTpowerCAD. This can be accessed from the first page where
the external, passive components are optimized. Starting the
filter designer brings up a filter design using passive ICs and
an EMC graph. The graph plots the conducted interference
with or without an input filter and within appropriate limits

Conducted (Differential Mode) EMI Filter Design
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8. The filter designer in LTpowerCAD for minimizing conducted interference at the input of a switching regulator.
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ton, the filter design is automated.

Of course, LTpowerCAD also sup-
ports the use of a filter on the output 9. Selecting an LC filter at
of the switching regulator. Oftentimes,
this filter is used for applications in which the output voltage
is only allowed to have a very low output-voltage ripple.

To add a filter in the output-voltage path, click the LC fil-
ter icon on the “Loop Comp. & Load Transient” page. Once
this icon is clicked, a filter appears in a new window (Fig.
9). The filter’s parameters can be easily selected from this
window. The feedback loop may either be connected in front
of this additional filter or behind it. Here, a stable response
of the circuit can be ensured in all operating modes despite
very good dc precision of the output voltage.

Power-Supply Design Step 4: Simulating the Circuit in
the Time Domain -

b g e

the output of a switching controller to reduce voltage ripple.

portant to know the potential and the limits of circuit sim-
ulation. Finding the optimal circuit might not be possible
using only simulation. During simulation, one can modify
parameters and restart the simulation.

However, if the user isn’t an expert in designing circuits, it
can be difficult to determine the right parameters and then
optimize them. As a result, it’s not always clear to the user
of a simulation whether the circuit has already achieved the
optimal state. A computing tool such as LTpowerCAD is
better suited for this purpose.

Simulating the Power Supply Using LTspice

LTspice, developed by Analog Devices, is a powerful

- o
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to implementing real hardware. It’s im-  10. Simulation circuit of an LTC33108S using LTspice.
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simulation program for electric circuits. It's widely used by
hardware developers, due to its ease of use, extended net-
work of user support, optimization options, and reliable
simulation results. In addition, LTspice is free of charge and
can easily be installed on a personal computer.

LTspice is based on the Spice program, which originated
from the Department of Electrical Engineering and Com-
puter Sciences at the University of California, Berkeley. The
acronym Spice stands for simulation program with inte-
grated circuit emphasis. Many commercial versions of this
program are available.

Although originally based on Berkeley’s Spice, LTspice of-
fers considerable improvements in the convergence of cir-
cuits and simulation speed. Additional features of LTspice
include a circuit diagram editor and waveform viewer. Both
are intuitive to operate, even for a beginner. These features
also provide a great deal of flexibility for the experienced
user.

LTspice is designed to be simple and easy to use. The pro-
gram, downloadable at analog.com, includes a large data-
base containing simulation models of nearly all power ICs
from Analog Devices along with external passive compo-
nents. As mentioned, once installed, LTspice can operate of-
fline. However, regular updates will ensure that the newest
models of switching regulators and external components are
loaded.

To start an initial simulation, choose an LTspice circuit in
the product folder of a power product on analog.com (for

example, the LT8650S evaluation board). These are usually
the suitable circuits of the available evaluation boards. By
double-clicking the related LTspice link in a specific prod-
uct folder, LTspice will launch the complete circuit locally
on your PC. It includes all external components and pre-
sets necessary to run a simulation. Then, click on the runner
icon (Fig. 10) to start simulation.

Following a simulation, all of the voltages and currents of
a circuit can be accessed using the waveform viewer. Figure
11 shows a typical illustration of the output voltage and the
input voltage as the circuit ramps up.

A Spice simulation is primarily suited for understanding a
power-supply circuit in detail so that no unwanted surprises
emerge when building the hardware. A circuit also can be
changed and optimized using LTspice. Furthermore, the in-
teraction of the switching regulator with the other parts of
the circuit on the PCB can be simulated, which is particu-
larly helpful in uncovering interdependencies. For example,
several switching regulators can be simulated at the same
time in one run. It extends the simulation time, but certain
interactions can be checked in this case.

Power-Supply Design Step 5: Testing the Hardware

While automation tools have a valuable purpose in power-
supply design, the next step is to perform a basic hardware
evaluation. The switching regulator operates with currents
switched at a very high rate. Due to the parasitic effects of the
circuit—particularly of the PCB layout—these switched cur-
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11. Simulation result of an LTC3310S circuit using LTspice.
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rents cause voltage offset, which generates radiation. Such
effects can be simulated using LTspice. To do this, however,
you need precise information about the parasitic properties.
Most of the time such information isn’t available. You would
have to make many assumptions, and these reduce the value
of the simulation result. Consequently, a thorough hardware
evaluation must be completed.

Printed-Circuit-Board Layout—An Important Compo-
nent

The PCB layout is usually known as a component. It’s so
critical that, for example, it’s not possible to operate a switch-
ing regulator for test purposes using jumper wires, as is the
case with a breadboard. Mainly, the parasitic inductance in
the paths where the currents are switched leads to a voltage
offset that makes operation impossible. Some circuits also
could be destroyed due to excessive voltage.

Support is available for creating an optimal PCB layout.
The corresponding datasheets for the switching-regulator
ICs usually provide information about a reference PCB lay-
out. For most applications, this suggested layout can be used.

Evaluating the Hardware Within the Specified Tempera-
ture Range

During the power-supply design process, conversion ef-
ficiency is considered to determine whether the switching-
regulator IC operates within the permissible temperature
range. However, testing the hardware at its intended tem-
perature limits is important. The switching-regulator IC and
even the external components vary their rated values over
the permissible temperature range. These temperature ef-
fects can easily be taken into consideration during the simu-
lation using LTspice.

However, such a simulation is only as good as the given
parameters. If these parameters are available with realistic
values, LTspice can perform a Monte Carlo analysis that
leads to the desired result. In many cases, evaluating the
hardware through physical testing is still more practical.

EMI and EMC Considerations

In late stages of system design, hardware must pass electro-
magnetic interference (EMI) and EMC tests. While these tests
must be passed with real hardware, simulation and calcula-
tion tools can be extremely useful in gathering insights. Dif-
ferent scenarios may be evaluated prior to hardware testing.

Certainly, some parasitics involved usually aren’t modeled
in simulation, but general performance trends related to
these test parameters can be obtained. In addition, the data
obtained from such simulations can provide the insights
necessary to apply modifications to the hardware quickly, in
case an initial EMC test wasn't passed. Since EMC tests are
costly and time-intensive, utilizing software such as LTspice
or LTpowerCAD in early design stages can help achieve
more accurate results prior to testing, thus speeding up the

overall power-supply design process and reducing costs.

Summary

The tools available for power-supply design have become
very sophisticated and powerful enough to meet the de-
mands of complex systems. LTpowerCAD and LTspice are
high performance tools with simple-to-use interfaces. As a
result, these tools can be invaluable to a designer with any
level of expertise. Anyone from the experienced developer
to the less experienced can use these programs to develop
power supplies on a day-to-day basis.

Its astounding how much simulation capabilities have
evolved. Using the proper tools can help you build a reliable,
sophisticated power supply more quickly than ever before.

Free Power Tools

o Optimization help LTpowerPlanner
o Calculation tool LTpowerCAD
o Simulation tool LTspice
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tions positions including four years in Phoenix, Ariz., where
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Devices in 2009 and works as a field applications engineer for
power management at Analog Devices in Miinchen.
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