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Stacking inductors on ICs or a PCB can help miniaturize power-management and
wireless power transfer (WPT) designs, leading to improved power density.

ne method involved in wireless power transfer

(WPT) technology is to employ magnetic reso-

nance with tight magnetic coupling. Research-

ers have measured a resonance in vertical multi-
coupled coils that have tight magnetic coupling. They also
analyzed the transferred power with respect to resonances of
vertical multi-coupled coils.

Tests have been validated and deter-
mined that both series and parallel reso-
nant frequencies of input impedance co-
incide with the frequency at which the
transferred power is increased. It’s also
been validated that the series resonant
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age source (Fig. 1). SOUEE Gapacior
Because impedance matching is em-

ployed, a resonant peak is generated at

the input impedance of each coil. The Rs

frequency of this peak is utilized for the

coupled coils is increased to #N, the number of the series
resonance peaks also will increase to #N and parallel reso-
nance peaks to #(N-1). The total number of resonance peaks
changes to #(2N-1). The distance between resonances wid-
ens farther and farther as the mutual inductance increases,
due to the addition of more coils.
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power transfer frequency.

However, if a design chooses tight +
magnetic coupling, the resonant peak of
the input impedance is divided into sev- 1y
eral peaks due to the increase of mutual

inductance between coupled coils. In = Is
this case, the frequencies of maximum
transferred power are changed (Fig. 2). o
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In this example, there will be changes
in input impedance as the number of
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the vertical multi-coupled coils is in- 1. Shown are mutual-coupled coils (M is mutual inductance) for a WPT system: a conceptual

creased to #N (the number of coils).
As the number of the vertical multi-

schematic drawing of a general WPT system (a) and a simplified equivalent circuit model (b).
(Image from Reference 3)

I LEARN MORE @ electronicdesign.com | 1


https://ieeexplore.ieee.org/document/6215772
https://ieeexplore.ieee.org/document/6215772
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

10000¢ —— 1Receiver (#2) Benefits of Stacked vs. Side-by-Side
N P +1 Dummy (#3) Coils

c C i _ .
N e i +2 Dummy (#4) Stacked coils hold an advantage over

side-by-side coils because they have a
smaller footprint on the PCB. Design-
ers need to be careful not to route com-
ponents too close to the sensing coils in
order to achieve the optimum sensitiv-
ity and channel-to-channel match. This
means better power density.
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: “Keep-out” distance is recommended
to at least half the coil diameter from the
M1 M3 Vg Mutual inductance  gengors. In a side-by-side arrangement,

effects .. .
R = 5chm ANt #N N1 the minimum PCB area for routing the
10 L , L ‘ sensor is 2 coil diameters high and 3.5
30K 100K M M coil diameters wide. The stacked ar-

Frequencyiz) rangement only needs 2 coil diameters
2. The impedance curves represent vertical multi-coupled coils where M is the mutual induc- high and wide (Fig. 3).
tance. (Image from Reference 1)

Passive-Stacked Buck
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In a conventional buck
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dc-dc converter, small in-
ductances will help achieve
high power density. How-
ever, these small inductors

3. This figure makes a PCB com-
parison between a stacked coil

Keepout

design and a side-by-side coil

gi — Region design. (Image from Reference 2)
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4. A conventional buck converter with a small-size inductor is processing a high load current (a), and a proposed PS3B converter with small-

size inductors that are processing the low input current (b). (Image from Reference 1)
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will have a high dc resistance (DCR), so they will limit the
achievable power density of a small buck converter to less
than 0.4 W/mm?.

Recent efforts in using switched-capacitor (SC) networks
can lead to improved power density. The caveat is that to
achieve this, designers will need to use fairly exotic ultra-
high-density capacitors that can operate over a small num-

ber of conversion ratios. When increasing the number of
ratios to help achieve good dynamic voltage scaling (DVS),
loads like 0.4 to 1.2 V along with conventional capacitors
will lower power density to much less than 0.1 W/mm?.

To improve power density in these instances, a hybrid dc-
dc converter topology can split the inductor, from a con-
ventional buck converter, into two half-sized inductors that

can be stacked on top of and below the
input coupling capacitor. That input
coupling capacitor is then “flying” and
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5. These diagrams compare the losses of a conventional buck converter, 2-phase buck
converter, and PS3B converter using the same total allocated inductor volume for the three

converters. (Image from Reference 1)

(a) (b)
6. Shown are the self-inductance and the mutual inductance for a three-layer multi-spiral
inductor: a three-layer stacked inductor (a), and a circuit depicting the self-inductance and
mutual inductance between three metal layers (b). (Image from Reference 4)

buck converter, which will help reduce
the area of the passives required for
filtering. This design has an increased
power density over the previous design
mentioned above when including the
area of passives (Figs. 4 and 5).

3D Multi-Spiral Inductor

This design is a version of multi-
stacked spiral solenoidal inductors.
Such an inductor stacking method will
enhance the inductance density of the
inductor for a given area, leading to im-
proved power density in a design.

Biomedical sensor electronics is a
perfect application for powering medi-
cal sensors. This design architecture for
PCB spiral inductors delivers low cost,
batch fabrication, durability, and manu-
facturability on flexible substrates.

For example, the design and use of
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Designers can use numerous tech-
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7. The illustration shows the geometry of a PCB embedded inductor (Image from Reference 5)

multi-spiral stacked solenoidal inductors for biomedical
applications in the 13.56-MHz band enhances an induc-
tor’s inductance density. Applications include wearable and
implantable sensor types. The use of batteries for a power
supply isn't appropriate for medical implantables or for
under-the-skin use because they can possibly contaminate
the blood. An alternative for powering implantable circuits
would be to supply power wirelessly for tether-less and bat-
tery-less operation of these circuits on a small PCB (Fig. 6).

An Efficient High-Power-Density PCB Embedded
Inductor

This section will examine the design and implementation
of a high-power-density, and highly efficient, air-core em-
bedded inductor onto a PCB. The design architecture is for
a 280 W-5 A/240 nH; 280 W-12 A/150 nH; and 280 W-18
A/50 nH power supplies. This toroidal PCB embedded in-
ductor has the advantage of reducing EMI effects in the con-
verter circuit design. Figure 7 shows the geometry of a PCB
embedded inductor.

The PCB embedded inductor will attain a higher power
density via the miniaturizing of the associated components
due to increasing the resistance. However, this will lead to
losses such as copper conduction loss.

There’s a tradeoff between higher power density and high-
er efficiency in a PCB embedded inductor. In the optimum
circuit design, the power design operates at a high 18-A cur-
rent with very low resistance (dc: 2.5 mQ/ac: 8 mQ). This
results in a high-power-density/efficient toroidal PCB em-
bedded inductor without the use of a heatsink. That current
inductor in particular achieves the benefit of integration
and miniaturization of the passive filter for high-frequency
wide-bandgap converters.

niques to minimize board space while
improving power density in their de-
signs. This article mentions and ex-
plains a few of the most useful stacked-
inductor architectures that help circuit
designers achieve high power density.
Each of these designs have tradeoffs that
the designer must consider to meet cir-
cuit design goals.
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