
RAFAEL TAUBINGER, Technical Marketing Specialist, 
IAR Systems

W
hen we talk about take control of your 
RISC-V codebase, there are really two 
aspects to it. The first meaning is reusing 
your codebase for future projects. The 

second aspect is that poor code quality is actually a wide-
spread problem—there’s quite a bit of evidence to support the 
claim that bad coding practices lead directly to vulnerabilities. 

Clearly, then, every developer and company must improve 
code quality so that the software stands the test of time. In 
other words, it needs to be defect-free, or as close to defect-
free as possible.

Reusing Code
The Boehm’s COCOMO1 method estimates how the 

relative cost of writing the code is dramatically impacted 

by how much you modify the reused software (Fig. 1). The 
x-axis is what percentage of modification you do to the 
code you intend to reuse, while the y-axis represents the 
percentage of what it would be if you wrote fresh code. 

Note that for two of the three data samples of code, you 
didn’t have to modify much of the supposedly reused code 
to suddenly jump to 50% of the effort of rewriting the code 
from scratch. The key point here is that if you really want to 
reuse code, it must be of very high quality and well designed 
to be cost-effective.

Focus on Code Quality 
There are several reasons why code quality is a big issue. 

First, depending on the maturity of your development 
organization, you can spend up to 80% of your time in 
debugging. 

If you could quickly isolate defects before they make 
it into a formal build, you’d have a lower defect injection 
rate, which means you can meet your organization’s quality 
metrics much more quickly. But it also means that your 
code has fewer remaining bugs overall, making it a good 
candidate for reuse since using the code again has a lower 
chance of uncovering a previously undetected bug. 

In addition, high-quality code is easier to maintain 
because of fewer defects and—if it follows good software 
engineering principles—it will be easier to extend. Therefore, 
reusing it really does give you faster follow-on projects. It’s 
also easier to get safety certifications if your application 
requires it. Consequently, higher code quality means less 
“technical debt” to reusing it.

Available Coding Standards
Many coding standards are available, but only a few are 

widely used. MISRA C2 is a software-development standard 
for the C programming language put together by the Motor 
Industry Software Reliability Association. Its aims are to 

Take Control of Your 
RISC-V Codebase
Delivering more complex software at an ever-increasing pace raises the risks of 
software errors, which can affect product quality as well as cause security issues. This 
becomes even more of a reality with the relatively new RISC-V codebase. 

1. The Boehm’s COCOMO nonlinear reuse effects method estimates 

how the relative cost of writing the code is dramatically affected by 

the amount of modification done to the reused software.

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


facilitate code safety, portability, and 
reliability in the context of embedded 
systems, specifically those systems 
programmed in ISO C.

The first edition of the MISRA C 
standard, “Guidelines for the use of the 
C language in vehicle-based software”, 
was produced in 1998, and is officially 
known as MISRA C:1998. There was an 
update in 2004 and again in 2012 to add 
more rules. There’s also a MISRA C++ 
2008 standard based on C++ 2003.

Some good coding standard rules also 
can be found from the CWE - Common 
Weakness Enumeration3 from MITRE. 
The list was started when the folks at 
mitre.org did a survey to find out what 
kinds of defects developers accidentally 
inject into their code. Surprisingly, 
developers of all stripes—web, app, 
desktop, or embedded—tend to make 
the same kinds of mistakes. Thus, was 
born the CWE, which is a list of these 
common pitfalls that developers should 
avoid. 

For example, there are allocations 
without deallocations in C++ code (or 
even in C code). Another involves functions used without 
prototyping, which is an interesting point on good coding 
practices. If you don’t prototype your function, you don’t get 
rigorous type-checking at compile time. 

However, you also can have less efficient code because the 
rules of the C language state that without a prototype, all 
arguments are promoted to integers. This can invoke casting 
and floating-point operations if your MCU doesn’t have an 
FPU. That’s why you should always prototype. But the main 
point to the CWE is that it identifies risky and bad coding 
behavior.

SEI CERT C and C++4 also define common vulnerabilities 
that come from case studies, like checking floats for out-of-
bounds conditions and making sure that you don’t override 
a const. It also prescribes styling conventions to make code 
more readable and understandable.

Practical Examples of MISRA C 2012
MISRA C 2012 is widely used for securing code quality 

in embedded applications. Let’s explore some rules and 
directives to better understand how the coding standards 
affect the source code. 

In Directive 4.6, for example, you’re not allowed to use a 
primitive data type. At first, this may seem like an odd thing 
to do, but when you understand the reason, it makes a lot 

of sense. Different compilers treat things 
like int differently, both in terms of its 
size and its signedness. This can make it 
tricky to review code as well. If you’re a 
reviewer, it also makes you wonder if the 
original author of the code understood 
how the compiler interprets that code. If 
you don’t use primitive types, you make 
the code invariant across compilers and 
architectures.

Most of the time, developers will be 
using something like uint16_t, which 
tells the compiler the variable is an 
unsigned 16-bit quantity because the 
width and signedness are explicitly 
stated in the variable type. These are 
part of stdint.h.

Another interesting directive is rule 
13. It says that the right-hand side of an 
AND or OR operator cannot contain 
side-effects. The code snippet in Figure 
2 might look fully correct, but it isn’t.

The issue is that the right-hand side 
only gets executed if the expression 
on the left-side is false. Only then will 
the pointer p be post-incremented. 
The problem is that it’s easy to get this 

behavior wrong when writing code. Moreover, everyone who 
ever reviews, tests, or maintains the code must understand 
the ramifications of how you wrote your code. It’s clear that 
comments in this section of code could help, but the reality 
is that it’s seldom well-documented.

Rule 14 states that the body of an if or while statement 
must be enclosed in curly braces (Fig. 3). 

It’s difficult to tell if the z=1 statement is intended to be 
part of the else block. This happens because it’s indented at 
the same level as the previous statement. If it’s intended to 
be that way, this is a bug because it clearly doesn’t go in the 
code block the way it’s written. This rule helps prevent this 
type of coding error. It’s just a small sample of the 200+ rules 
available in MISRA C to make your code more reliable and 
portable, thus future-proofing your design.

Fast Ways to Better Code
The quickest way to improve code quality is to use code-

analysis tools. In fact, if you’re doing a functional-safety 
certified application, you’re required to use static analysis. 

These types of tools help you find the most common 
sources of defects in your code. However, they also help 
you find problems that developers tend to not think or 
worry about when they’re trying to write their code, 
especially when they’re just putting up scaffold code to just 

3. MISRA C 2012 rule 14 states that the body 

of an if or while statement must be enclosed 

in curly braces.

2. MISRA C 2012 rule13 states that the right-

hand side of an AND or OR operator cannot 

contain side-effects.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


get something working. These types of 
tools really help you develop better code 
because they enforce coding standards.

Depending on the quality of your 
static-analysis solution, they can check 
for many other potential issues while 
you’re still desk-checking your code. 
To see how it works, let’s check the 
C-STAT static-analysis tool (which is 
built into IAR Embedded Workbench 
for RISC-V) in action. 

C-STAT sources its rules from MISRA 
C 2004 and 2012 rulesets, MISRA C++ 
2008 ruleset, the Common Weakness 
Enumeration (CWE) from MITRE, 
and from SEI CERT C. Figure 4 shows 
the available rules that can be enabled 
or used to enforce compliance with the 
coding standards. 

It’s possible to drill down into 
categories and select only the rules that 
we feel are applicable to our project. In 
addition, it’s possible to override these 
selections at the group, file, function, 
or even individual line level to give a 

5. Code-analysis messages.

4. Standards and rule selection. 

6. Context-sensitive help. 

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


complete granularity over what’s being checked. 
Once the tools are configured, the project (or group or 

individual source file) can be analyzed (or files). After the 
analysis completion, it’s possible to drill into each file to 
verify the issue that has been triggered:

The detected issue CERT-ERR33-C_c in Figure 5 is part of 
the CERT C rules. Most of the rules are self-explanatory, but 
more information can be found in the user guides or in the 
context-sensitive help (F1) like that displayed in Figure 6.

From the help window, it’s possible to get a full description 
of the issue, how certain this is a bug versus the severity 
of what happens if that bug manifests itself, and all of the 
coding standards it violates. Most importantly—down at the 

bottom, like shown in Figure 7—it’s possible to see 1-3 code 
examples that show a bad example and how to correct it so 
that it will pass the check and make the code more robust. 
This helps to quickly eradicate the defects that static analysis 
uncovered in the source code.

Automated Workflows
Ensuring code quality is important for developers working 

day-by-day at the desk. However, even more important is the 
code quality in modern and scalable build server topologies 
for CI/CD pipelines including virtual machines, containers 
(docker), and runners. 

Code-analysis tools should scale well so that the automated 

7. Code examples that 

fail and pass checks. 

8. Automated workflows.

☞LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


task of ensuring compliance with the programming 
standards can easily be achieved for bigger teams and teams 
spread out in different locations around the globe. Figure 8 
shows the use of the C-STAT static-analysis tool used from 
the command line in Linux - Ubuntu. For many automated 
workflows, the cross-platform support is a standard to 
improve efficiency for development teams. 

Get Help from Code Analysis
One of the major theoretical benefits of static analysis 

is that it doesn’t impact the performance of a system since 
it’s not even running the system while performing the 
analysis. It’s also independent of the quality of test suites. 
After all, finding a specific error in running code depends 
on executing a specific path through the program with 
a specific dataset. However, a static-analysis tool can, in 
theory, examine all possible paths through the code.

By introducing code-quality control early in the 
development cycle or while reusing code and future-
proofing the source code, the impact of errors can be 
minimized. Providing static analysis at the fingertips of 
developers working with RISC-V devices with well-defined 
coding standards can help them find issues in the source 
code during development, where the cost of errors is smaller 
than in the released product.

References
1. https://en.wikipedia.org/wiki/COCOMO 
2. https://www.misra.org.uk/misra-c/ 
3. https://cwe.mitre.org/ 
4.https://wiki.sei.cmu.edu/confluence/display/seccode/

☞LEARN MORE @ electronicdesign.com | 5

https://en.wikipedia.org/wiki/COCOMO
https://www.misra.org.uk/misra-c/
https://cwe.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


☞LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


☞LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


☞LEARN MORE @ electronicdesign.com | 8

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

