Relative Cost

Electronic
Design.

RAFAEL TAUBINGER, Technical Marketing Specialist,
IAR Systems

Take Control of Your
RISC-V Codebase

Delivering more complex software at an ever-increasing pace raises the risks of
software errors, which can affect product quality as well as cause security issues. This
becomes even more of a reality with the relatively new RISC-V codebase.

hen we talk about take control of your

RISC-V codebase, there are really two

aspects to it. The first meaning is reusing

your codebase for future projects. The

second aspect is that poor code quality is actually a wide-

spread problem—there’s quite a bit of evidence to support the

claim that bad coding practices lead directly to vulnerabilities.

Clearly, then, every developer and company must improve

code quality so that the software stands the test of time. In

other words, it needs to be defect-free, or as close to defect-
free as possible.

Reusing Code
The Boehm’s COCOMO! method estimates how the
relative cost of writing the code is dramatically impacted

AAM Worst Case:
15 1+ AAF = varies
AA=8
SuU =50
4 UNFM = 1
AAM
10 +
Selby data AAM Best Case:
summary AAF = varies
4 AA=0
SU=10
UNFM =0
o = i
1 [Selby 1988]
0.045 |
00 : t t —
0.0 50 100

Relative Modification of Size (AAF)

1. The Boehm’s COCOMO nonlinear reuse effects method estimates
how the relative cost of writing the code is dramatically affected by

the amount of modification done to the reused software.

by how much you modify the reused software (Fig. I). The
x-axis is what percentage of modification you do to the
code you intend to reuse, while the y-axis represents the
percentage of what it would be if you wrote fresh code.

Note that for two of the three data samples of code, you
didn’t have to modify much of the supposedly reused code
to suddenly jump to 50% of the effort of rewriting the code
from scratch. The key point here is that if you really want to
reuse code, it must be of very high quality and well designed
to be cost-effective.

Focus on Code Quality

There are several reasons why code quality is a big issue.
First, depending on the maturity of your development
organization, you can spend up to 80% of your time in
debugging.

If you could quickly isolate defects before they make
it into a formal build, youd have a lower defect injection
rate, which means you can meet your organizations quality
metrics much more quickly. But it also means that your
code has fewer remaining bugs overall, making it a good
candidate for reuse since using the code again has a lower
chance of uncovering a previously undetected bug.

In addition, high-quality code is easier to maintain
because of fewer defects and—if it follows good software
engineering principles—it will be easier to extend. Therefore,
reusing it really does give you faster follow-on projects. It’s
also easier to get safety certifications if your application
requires it. Consequently, higher code quality means less
“technical debt” to reusing it.

Available Coding Standards

Many coding standards are available, but only a few are
widely used. MISRA C? is a software-development standard
for the C programming language put together by the Motor
Industry Software Reliability Association. Its aims are to

05" LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

facilitate code safety, portability, and [;¢
reliability in the context of embedded
systems, specifically those systems
programmed in ISO C.

The first edition of the MISRA C |
standard, “Guidelines for the use of the

((x == y)
{

/* do something */

of sense. Different compilers treat things
like int differently, both in terms of its
size and its signedness. This can make it
tricky to review code as well. If you're a
reviewer, it also makes you wonder if the

(*pt+ == 2))

C language in vehicle-based software”,
was produced in 1998, and is officially
known as MISRA C:1998. There was an
update in 2004 and again in 2012 to add
more rules. There’s also a MISRA C++

contain side-effects.

2. MISRA C 2012 rule13 states that the right-

hand side of an AND or OR operator cannot

original author of the code understood
how the compiler interprets that code. If
you don’t use primitive types, you make
the code invariant across compilers and
architectures.

2008 standard based on C++ 2003. if (x =10)
Some good coding standard rulesalso | {

can be found from the CWE - Common y = 10;

Weakness Enumeration® from MITRE.

The list was started when the folks at z =0

mitre.org did a survey to find out what | }

kinds of defects developers accidentally | o;se

inject into their code. Surprisingly, g = 20;

developers of all stripes—web, app, ’

desktop, or embedded—tend to make z=15

Most of the time, developers will be
using something like uintl16_t, which
tells the compiler the variable is an
unsigned 16-bit quantity because the
width and signedness are explicitly
stated in the variable type. These are
part of stdint.h.

Another interesting directive is rule
13. It says that the right-hand side of an
AND or OR operator cannot contain
side-effects. The code snippet in Figure

the same kinds of mistakes. Thus, was
born the CWE, which is a list of these
common pitfalls that developers should
avoid.

For example, there are allocations
without deallocations in C++ code (or
even in C code). Another involves functions used without
prototyping, which is an interesting point on good coding
practices. If you don’t prototype your function, you don’t get
rigorous type-checking at compile time.

However, you also can have less efficient code because the
rules of the C language state that without a prototype, all
arguments are promoted to integers. This can invoke casting
and floating-point operations if your MCU doesn’'t have an
FPU. That’s why you should always prototype. But the main
point to the CWE is that it identifies risky and bad coding
behavior.

SEI CERT C and C++*also define common vulnerabilities
that come from case studies, like checking floats for out-of-
bounds conditions and making sure that you don't override
a const. It also prescribes styling conventions to make code
more readable and understandable.

in curly braces.

Practical Examples of MISRA C 2012

MISRA C 2012 is widely used for securing code quality
in embedded applications. Let’s explore some rules and
directives to better understand how the coding standards
affect the source code.

In Directive 4.6, for example, you're not allowed to use a
primitive data type. At first, this may seem like an odd thing
to do, but when you understand the reason, it makes a lot

3. MISRA C 2012 rule 14 states that the body

of an if or while statement must be enclosed

2 might look fully correct, but it isn’t.

The issue is that the right-hand side
only gets executed if the expression
on the left-side is false. Only then will
the pointer p be post-incremented.
The problem is that it’s easy to get this
behavior wrong when writing code. Moreover, everyone who
ever reviews, tests, or maintains the code must understand
the ramifications of how you wrote your code. It’s clear that
comments in this section of code could help, but the reality
is that it’s seldom well-documented.

Rule 14 states that the body of an if or while statement
must be enclosed in curly braces (Fig. 3).

It's difficult to tell if the z=1 statement is intended to be
part of the else block. This happens because it’s indented at
the same level as the previous statement. If it’s intended to
be that way, this is a bug because it clearly doesn’t go in the
code block the way it’s written. This rule helps prevent this
type of coding error. It’s just a small sample of the 200+ rules
available in MISRA C to make your code more reliable and
portable, thus future-proofing your design.

Fast Ways to Better Code

The quickest way to improve code quality is to use code-
analysis tools. In fact, if youre doing a functional-safety
certified application, you're required to use static analysis.

These types of tools help you find the most common
sources of defects in your code. However, they also help
you find problems that developers tend to not think or
worry about when theyre trying to write their code,
especially when they’re just putting up scaffold code to just

I=°LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Select C-STAT Checks e 4. Standards and rule selection.
C-STAT checks Search: r
Name Severity Used Synopsis
£ STDCHECKS 129/2.. C-STAT specific checks ~
+ CERT 177/1.. Checks based on the CERT standard
= SECURITY 28/43 Checks based on the CWE standard
* SEC-BUFFER 17/26 Buffer Vulnerabilities
] SEC-DIV-0 Al Division By Zero
& SEC-FILEQP 2/3 File Operation Vulnerabilities
[/] SEC-INJECTION None Data Injection
£ SEC-LOOP All Looping Vulnerabilities
+ SEC-NULL 4f6 NULL Painter Vulnerabilities
=l |4 SEC-STRING 12 String Errors
SEC-STRING-format-string ~ High User input is used as a format string.
[] SEC-STRING-hard-coded.. Medium The application hard codes a username or password to
[1 MISRAC2004 142/1.. Checks based on the MISRA C 2004 standard ”
< >
Cancel
C-STAT Messages
Severtty: Al Filter: Messages: 4
Message Check Severity File Line
= B Utilities.c (4 messages) Utilities.c
Calling standard library function “putchar' without detecting and handling errors or casting explicitly to “void' CERT-ERR33-C_c High Utilities.c 54
= # PutFib Utilities.c 52
A if (out>=10000u) is true Utilities.c 52
A Calling standard library function “putchar' Utilities.c 54
A fn_retumn Utilities.c 49
A, Calling standard library function "putchar’ without detecting and handling errors or casting explicitly to “void' CERT-ERR33-C_c High Utilities.c 58
= A, Calling standard library function "putchar' without detecting and handling errors or casting explicitly to “void CERT-ERR33-C_c High Utilities.c B7
5. Code-analysis messages.
get something working. These types of [g s emseases workvercn o ror sc-v - o x

tools really help you develop better code e 208
because they enforce coding standards.
X 8 Contents Index Search Favorites
Depending on the quality of your | rpeenuetemosioa
static-analysis solution, they can check | [cerrerrsc.c

IAR Systems

L. . C-STAT checks : D f checks : CERT-ERR33-C_
for many other potential issues while | [Eacanee s e B e :
CERT-ERR34-C_a
youe still desk-checking your code. ||ssarerrace CERT-ERR33.C
. g -C_a - - C
To see how it works, lets check the ||cErremncs -
. . . . CERT-EXP32-C Synopsis
- - CERT-EXP33-C_a
C STAT Statlc analYSIS t001 (WhICh 18 ggigiggg_gf Detectand handle standard library errors
built into JAR Embedded Workbench CERTEPSC s Enabled by default
for RISC-V) in action. CERT EXPt G o ves
. CERT-EXP34-C_b
C-STAT sources its rules from MISRA | |cearexeaece Severity/Certainty
C 2004 and 2012 rulesets, MISRA C++ | |Grromsiar |
CERT-EXP34-C_g
2008 ruleset, the Common Weakness | |cErreese Highigh
. RT-EXP36-
numeration rom s gERT-Engg-S_: Full description
E t CWE) f MITRE
CERT-EXP37-C_b
and from SEI CERT C Figure 4 ShOWS gg:&igg;g: The majority of the standard library functions, including \/Dfuncnrfnsrandmemuryal\ucanon functions,
. CERT-EXP39-C b return either a valid value or a value of the correct return type thatindicates an error (mrexamp\e, -1ora
the avallable rules that can be enabled CERT-EXP39-C_c null pointer). Itis essential that programs detect and appropriately handle all errors in accordance with
. . CERT-EXP39-C d an error-handling policy. This check warns on usage of standard library functions listed in EX1 without
or used to enforce compliance with the | |SEhEans: checking for errors or explicil discard the return value
. CERT-EXP40-C_b
coding standards. CERT-EXPi2-C Coding standards
CERT-EXP43-C
Its possible to drill down into SEE?E?E%E:E CERTERRESC
t . d l t 1 th 1 th t gg;;éigﬁ—g,d Detectand handle errors
categories and select only the rules that | |cerrexraic cwe 252
we feel are applicable to our project. In | [cewreire . Unchocked Retur Value
-EXP47-C_b v
addition, it’s possible to override these — oW 253
. . = Incorrect Check of Function Return Value M
selections at the group, file, function,

or even individual line level to give a 6. Context-sensitive help.

05" LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

complete granularity over what’s being checked.

Once the tools are configured, the project (or group or
individual source file) can be analyzed (or files). After the
analysis completion, it's possible to drill into each file to
verify the issue that has been triggered:

The detected issue CERT-ERR33-C_c in Figure 5 is part of
the CERT C rules. Most of the rules are self-explanatory, but
more information can be found in the user guides or in the
context-sensitive help (F1) like that displayed in Figure 6.

From the help window, it’s possible to get a full description
of the issue, how certain this is a bug versus the severity
of what happens if that bug manifests itself, and all of the
coding standards it violates. Most importantly—down at the

bottom, like shown in Figure 7—it’s possible to see 1-3 code
examples that show a bad example and how to correct it so
that it will pass the check and make the code more robust.
This helps to quickly eradicate the defects that static analysis
uncovered in the source code.

Automated Workflows

Ensuring code quality is important for developers working
day-by-day at the desk. However, even more important is the
code quality in modern and scalable build server topologies
for CI/CD pipelines including virtual machines, containers
(docker), and runners.

Code-analysis tools should scale well so that the automated

[IAR Embedded Workbench Help for RISC-V - O X 7. Code examples that
g & ¢ =2 @& & fail and pass checks.
Hide Locate Back Forward Home Print
Contents Index Search Favorites L

Full description Q)
Type in the keyword to find:

The majority of the standard library functions, including I/C functions and memory allocation functions,
‘CERT'EHRJQC ¢ return either a valid value or a value of the correct return type thatindicates an error (for example, -1 ora
CERT-ERR33-C ¢ ~ null pointer). Itis essential that programs detect and appropriately handle all errors in accordance with
CERT-ERR33-C_d an errer-handling policy. This check warns on usage of standard library functions listed in EX1 without
CERT-ERR34-C_a .
CERT-ERR34-C b checking for errors or explicitly discard the return value
CERT-EXP13-C i
CERT-EXP30-C_a Coding standards
CERT-EXP30-C_b
CERT-EXP32-C CERT ERR33-C
CERT-EXP33-C_a
CERT-EXP33-C_b Detectand handle errors
CERT-EXP33-C_¢
CERT-EXP33-C _d CWE 252
CERT-EXP33-C_e
CERT-EXP33-C_f Unchecked Return Value
CERT-EXP34-C_a
CERT-EXP34-C_b CWE 253
CERT-EXP34-C_c
CERT-EXP34-C_d Incorrect Check of Function Return Value
CERT-EXP34-C_e
CERT-EXP34-C_f CWE 391
CERT-EXP34-C g
CERT-EXP35-C Unchecked Error Condition
CERT-EXP36-C_a
CERT-EXP36-C_b
CERT-EXP37-C_a Code examples
g;;;;igg;g-: The following code example fails the check and will give a warning:
gE;?E;gg:'g ; #include<stdio.h>
CERT-EXP33-C_c) .
CERT-EXP39-C_d void example (void) {
CERT-EXP38-C_e printf("Hello, world\n"):
CERT-EXP40-C_a }
CERT-EXP40-C_b
CERT-EXP42-C The following code example passes the check and will not give a warning about this issue:
CERT-EXP43-C_a .
CERT-EXP43-C_b #include<stdio.h>
CERT-EXP43-C_c
CERT-EXP43-C_d void example (void) {
CERT-EXP44-C (void) printf(“Hello, world\n"); // printf() return value safely ignored
CERT-EXP45-C }
CERT-EXP46-C
CERT-EXP47-C_a
CERT-EXP47-C_b v

Display = = W

Production

d Line Build utility
ght 2021-2021

8. Automated workflows.

05" LEARN MORE @ electronicdesign.com | 4

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

task of ensuring compliance with the programming
standards can easily be achieved for bigger teams and teams
spread out in different locations around the globe. Figure 8
shows the use of the C-STAT static-analysis tool used from
the command line in Linux - Ubuntu. For many automated
workflows, the cross-platform support is a standard to
improve efficiency for development teams.

Get Help from Code Analysis

One of the major theoretical benefits of static analysis
is that it doesn’t impact the performance of a system since
it's not even running the system while performing the
analysis. Its also independent of the quality of test suites.
After all, finding a specific error in running code depends
on executing a specific path through the program with
a specific dataset. However, a static-analysis tool can, in
theory, examine all possible paths through the code.

By introducing code-quality control early in the
development cycle or while reusing code and future-
proofing the source code, the impact of errors can be
minimized. Providing static analysis at the fingertips of
developers working with RISC-V devices with well-defined
coding standards can help them find issues in the source
code during development, where the cost of errors is smaller
than in the released product.

References

1. https://en.wikipedia.org/wiki/ COCOMO

2. https://www.misra.org.uk/misra-c/

3. https://cwe.mitre.org/

4 https://wiki.sei.cmu.edu/confluence/display/seccode/

05" LEARN MORE @ electronicdesign.com | 5

https://en.wikipedia.org/wiki/COCOMO
https://www.misra.org.uk/misra-c/
https://cwe.mitre.org/
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices?focusedCommentId=88044413
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

05" LEARN MORE @ electronicdesign.com | 6

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

05" LEARN MORE @ electronicdesign.com | 7

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

05" LEARN MORE @ electronicdesign.com | 8

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

