
By CABE ATWELL, Contributing Editor

I
n computer programming and software development, 
engineers will deploy debugging tools and processes to find 
and mitigate “bugs” or problems within programs, applica-
tions, and systems. The word “debugging” was derived in 

the 1940s when a Mark II computer (Aiken Relay Calculator) 
malfunctioned, and engineers subsequently found a moth 
stuck in a relay, impeding normal operation. 

All kinds of techniques and tools allow engineers to root 
out problems within a software environment. As software 
and electronic systems have become 
more complex, the various debugging 
techniques have broadened with more 
methods to detect anomalies, assess im-
pact, and provide  software patches  or 
complete system updates. 

Debugging ranges in complexity 
from fixing simple errors to performing 
lengthy and extensive tasks, including 
data collection, analysis, and schedul-
ing updates. The difficulty of software 
debugging varies depending on the 
complexity of the system and, to some 
extent, on the  programming language 
used and the available tools. 

Software tools enable the  program-
mer to monitor the execution of a pro-
gram, stop it, restart it, set breakpoints, 
and change values in memory, among 
others. Much of the debugging process 
is done in real-time by monitoring the 

code flow during execution, more so during the develop-
ment process before application deployment.

What is Tracing?
One technique that monitors software in real-time de-

bugging is known as “tracing,” which involves a specialized 
use of logging to record information about a program’s ex-
ecution. Programmers typically use this information to di-
agnose common problems with software and applications. 

Trace and Debugging: 
An Explanation, 
Techniques, and 
Applications
“It’s a bug hunt”… A look at modern trace and debugging techniques such as static 
and dynamic analysis.

1. Trace applications allow engineers to identify the root and processes that have caused 

applications to function improperly via data collection using dynamic and static analysis. 

(Image credit: Pexels)

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


Tracing is a cross-cutting concern, meaning it involves as-
pects of a program that can affect other parts of the same 
system and, in turn, provides detailed information of the 
program as it’s executed. 

With debug and trace, programmers are able to monitor 
the application for errors and exceptions without the need 
for an integrated development environment (IDE). In debug 
mode, a compiler inserts debugging code inside the execut-
able. Because the debugging code is part of the executable, 
it runs on the same thread as the code. As a result, it doesn’t 
provide the same efficiency of the code. 

Trace works in both debug and logging mode, recording 
events as they occur in real-time. The main advantage of us-
ing trace over debugging is to do a performance analysis, 
which can’t be accomplished on the debugging end.

What’s more, trace runs on a different thread. Thus, it 
doesn’t impact the main code thread. When used in tandem, 
tracing and debugging can provide information on program 
execution and root out errors in the code as they happen. 

1.	 Trace Techniques 
It should be noted that tracing and logging are two sepa-

rate entities; they provide overviews of software execution, 
with each functioning differently (Fig. 1). Logging tracks er-
ror reporting and related data in a centralized way, showing 
discrete events within an application or system, such as fail-
ures, errors, corruption, and states of transformation. 

On the other hand, tracing follows a program’s flow and 
data progression, providing more information over a larger 
spectrum of the app stack. Tracing lets users see when and 
how the error occurred, including which function is at fault, 

duration, parameters, and how deep the function goes.
To that end, various techniques and applications can carry 

out that function. These techniques depend on the ability 
to collect information about the system under study. Data-
collection techniques can be grouped into two categories: 
static analysis and dynamic analysis. 

Static analysis uses the source code to uncover the sys-
tem’s components and relationships. Performing static anal-
ysis has the benefit of covering all of the program’s execu-
tion paths. However, it’s only able to reveal the static aspects 
of the system, and it’s limited in providing insights into the 
behavioral characteristics of the program. This insight can 
be critical for analyzing distributed applications such as 
service-based systems due to the high level of interactions 
involved.

Dynamic analysis is the study of how the system behaves 
by analyzing its execution traces. Unlike static analysis, dy-
namic allows users to focus only on parts of the program 
that need to be analyzed, which is accomplished by ana-
lyzing the interactions of the active components. Dynamic 
analysis also can be utilized for applications that require 
understanding the system’s behavior by relating the system 
inputs to its outputs. 

There are two types of dynamic analysis: online and of-
fline. Online analyzes the behavior of an active system while 
it’s running. This type of dynamic analysis comes in handy 
when the system under analysis will not terminate its task 
over long periods. Offline analysis is different from the time 
when event traces are collected, meaning the event traces are 
collected during the execution of the system, while the anal-

2. Datadog’s Distributed Tracing platform aggregates metrics and events across the entire application stack. (Image credit: Datadog)

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF


ysis is usually performed upon completion of the execution.
This brings us to distributed tracing, which handles trace-

based analysis in a cloud environment, microservices, con-
tainer-based deliveries, etc. Distributed tracing follows an 
interaction by tagging it with a unique identifier and staying 
with the transaction as it interacts with those applications 
mentioned above. 

The unique identifier provides real-time visibility as the 
application runs through its process. It offers insight into the 
flow of requests through that microservice environment and 
identifies where failures or performance issues occur within 
the system.

2.	 Applications
A wide variety of trace apps can provide in-depth insight 

into every software platform imaginable, with some being 
platform-specific for systems that utilize Android, Win-
dows, and Linux, among a host of others. Below are several 
widely used trace applications that incorporate a variety of 
metrics and analytics for pinpointing bugs along the devel-
opment chain.

Datadog APM
The Datadog APM is a cloud-based software performance 

monitor that packs many varieties of source data, includ-
ing distributed-tracing messages (Fig 2). The platform can 
collect and process OpenTracing and OpenTelemetry mes-
sages, which are filed with other indicators to make insight 
a breeze. It also aggregates statistics on microservice perfor-
mance and application processing environments with agents 
that can target specific telemetry insight. 

Beyond monitoring standard distributed-tracing mes-
sages, the Datadog APM can interface with a range of AWS 
services, including the Lambda microservices platform. In 
addition, it generates  visual representations  that show the 
connections between microservices operating live in a hi-
erarchy.

New Relic APM
The New Relic APM is targeted at developers and busi-

nesses that want to monitor their microservices infra-
structure. The platform centralizes the data collected from 
various sources, including distributed-tracing messages gar-
nered via OpenTelemetry, OpenTracing, OpenCensus, and 
Zipkin. It also can monitor other data sources, including ap-
plication log files from infrastructure devices, along with a 
list of  AWS  services such as  Lambda, Azure,  Apache, and 
operating-system status reports. 

As with Datadog, New Relic deploys its own agents to 
provide additional insight into web and app performance, 
driven by microservice actions, including browser monitors 
and connection testers.

Dynatrace
Dynatrace is an AI-driven platform that utilizes the cloud, 

applying machine-learning and heuristics to identify criti-

cal information from large amounts of data generated by 
reporting and logging systems. The Dynatrace system takes 
advantage of the OpenTrace standard and processes activi-
ties that contribute to a given application. It then tracks back 
by analyzing distributed-tracing messages to identify all of 
the microservices that worked on a given session for that 
application. 

While the platform allows developers and system manag-
ers to write and test microservices efficiently, it also moni-
tors application performance and will produce alerts if a 
problem is identified within that microservice.

☞LEARN MORE @ electronicdesign.com | 3

https://www.datadoghq.com/product/
https://newrelic.com/lp/developersignup?utm_campaign=Brand-Alpha-NORAM&utm_medium=cpc&utm_source=google&utm_content=&fiscal_year=FY21&quarter=Q4&gtm=DEV&program=P2P&ad_type=TXT&geo=AMER&utm_term=new%20relic&utm_device=c&_bt=573823625218&_bm=p&_bn=g&gclid=EAIaIQobChMI5YiEgbzn9gIVFxPUAR0MqASCEAAYASAAEgI3R_D_BwE
https://www.dynatrace.com/monitoring/integrations/opentracing/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

