Electronic
Design.

By CABE ATWELL, Contributing Editor

Trace and Debugging:
An Explanation,
Techniques, and
Applications

“It’s a bug hunt”... A look at modern trace and debugging techniques such as static

and dynamic analysis.

n computer programming and software development,
engineers will deploy debugging tools and processes to find

code flow during execution, more so during the develop-
ment process before application deployment.

and mitigate “bugs” or problems within programs, applica-

tions, and systems. The word “debugging” was derived in
the 1940s when a Mark IT computer (Aiken Relay Calculator)
malfunctioned, and engineers subsequently found a moth
stuck in a relay, impeding normal operation.

All kinds of techniques and tools allow engineers to root
out problems within a software environment. As software

and electronic systems have become
more complex, the various debugging
techniques have broadened with more
methods to detect anomalies, assess im-
pact, and provide software patches or
complete system updates.

Debugging ranges in complexity
from fixing simple errors to performing
lengthy and extensive tasks, including
data collection, analysis, and schedul-
ing updates. The difficulty of software
debugging varies depending on the
complexity of the system and, to some
extent, on the programming language
used and the available tools.

Software tools enable the program-
mer to monitor the execution of a pro-
gram, stop it, restart it, set breakpoints,
and change values in memory, among
others. Much of the debugging process
is done in real-time by monitoring the

What is Tracing?

One technique that monitors software in real-time de-
bugging is known as “tracing,” which involves a specialized
use of logging to record information about a program’s ex-
ecution. Programmers typically use this information to di-
agnose common problems with software and applications.

<a class="left carousel-control" hpefs"
<span class="glyphicon glyphicon-chev:
Previous

<a class="right carousel-control” href="#myCarousel"
<span class="glyphicon glyphicon-chevron-right” aria-hiss
Next

 3
</div><!-- /.carousel --

#uyCarousel” roles
ron-left” aria-hiss

t Section-->

Featured Conten

<!--
—container">

row™> sy /dIV> cowTenT <"
ol‘"‘d'in: <h2> FEA -

1. Trace applications allow engineers to identify the root and processes that have caused
applications to function improperly via data collection using dynamic and static analysis.

(Image credit: Pexels)

£°LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

> Services > coffee-house > servietrequest > GET /coffeehouse > 1592247487685740042

@ coffee-house | GET /coffeehouse
Feb7,4:13pm 1.85s GET hups//java-coffeehouse:8080/coffechouse [ELTTd

Flame Graph Span List (59)

100ms

200ms 300ms 400 ms 500ms 600 ms 700ms

Service v % ExecTime v

800ms 900ms 15ec 1.1 secs 1.2 ecs 1.3 ecs 1.4 secs 15 5ecs 16 3ecs 17 secs

@ coffee-house 36.5%

@ php.backend.api 29.0%
@ mongo 23%
@ php.frontendss..
.l

W bean-server

7.49%
1.41%
128%
CR)

B pdo

W memcached

1.16%
0.74%
0.15%

@ permission_ch... <0.1%

@ coffee-h

@ demo.coffeehouse.dev @ 1.85'5 (99.5% of total time)

| OpenT gl OpenTracingBrewInfo

Span Metadata HostInfo Logs

traceid « trace_id:1592247487685740042
DATE t SERVICE HoOST
Feb 07 16:13:16.000 = coffee-house = demo.coffeehouse.dev

GET /api/auth/ 10.8.4.7 ~ 200 0K ~ Authentication successful
Feb 07 16:13:16.000 = coffee-house = demo.coffeehouse.dev

Monitor thread successfully connected to server with description ServerDescription address=mo
maxDocumentSize=16777216, logicalSessionTimeoutMinutes=null, roundTripTimeNanos=1277564
Feb 07 16:13:17.000 = coffee-house = demo.coffeehouse.dev

ngodb.

java.lang.InterruptedException: Thread interrupted for external calls timeout 500
Feb 07 16:13:18.000 = coffee-house | demo.coffeehouse.dev

GET http://java-coffeehouse:8080/coffeehouse completed with status code 200 in 1845 ms

0
serviet.request GET /coffeehouse

27017, type=STANDALONE, state=CONNEC

http.request GET /beanserver

serviet.request GET /beanse..|
BeanController.redirect 182..
BeanController.beanServe...

mongo.query { “Seval” :

TED, ok=true, version=ServerVersion versionList= 3, 4, 17/ |, minWireVersion=0, maxWireVersion=5,

2. Datadog’s Distributed Tracing platform aggregates metrics and events across the entire application stack. (Image credit: Datadog)

Tracing is a cross-cutting concern, meaning it involves as-
pects of a program that can affect other parts of the same
system and, in turn, provides detailed information of the
program as it’s executed.

With debug and trace, programmers are able to monitor
the application for errors and exceptions without the need
for an integrated development environment (IDE). In debug
mode, a compiler inserts debugging code inside the execut-
able. Because the debugging code is part of the executable,
it runs on the same thread as the code. As a result, it doesn’t
provide the same efficiency of the code.

Trace works in both debug and logging mode, recording
events as they occur in real-time. The main advantage of us-
ing trace over debugging is to do a performance analysis,
which can't be accomplished on the debugging end.

What’s more, trace runs on a different thread. Thus, it
doesn’t impact the main code thread. When used in tandem,
tracing and debugging can provide information on program
execution and root out errors in the code as they happen.

1. Trace Techniques

It should be noted that tracing and logging are two sepa-
rate entities; they provide overviews of software execution,
with each functioning differently (Fig. 1). Logging tracks er-
ror reporting and related data in a centralized way, showing
discrete events within an application or system, such as fail-
ures, errors, corruption, and states of transformation.

On the other hand, tracing follows a programs flow and
data progression, providing more information over a larger
spectrum of the app stack. Tracing lets users see when and
how the error occurred, including which function is at fault,

duration, parameters, and how deep the function goes.

To that end, various techniques and applications can carry
out that function. These techniques depend on the ability
to collect information about the system under study. Data-
collection techniques can be grouped into two categories:
static analysis and dynamic analysis.

Static analysis uses the source code to uncover the sys-
tem’s components and relationships. Performing static anal-
ysis has the benefit of covering all of the program’s execu-
tion paths. However, it’s only able to reveal the static aspects
of the system, and it’s limited in providing insights into the
behavioral characteristics of the program. This insight can
be critical for analyzing distributed applications such as
service-based systems due to the high level of interactions
involved.

Dynamic analysis is the study of how the system behaves
by analyzing its execution traces. Unlike static analysis, dy-
namic allows users to focus only on parts of the program
that need to be analyzed, which is accomplished by ana-
lyzing the interactions of the active components. Dynamic
analysis also can be utilized for applications that require
understanding the system’s behavior by relating the system
inputs to its outputs.

There are two types of dynamic analysis: online and of-
fline. Online analyzes the behavior of an active system while
it’s running. This type of dynamic analysis comes in handy
when the system under analysis will not terminate its task
over long periods. Offline analysis is different from the time
when event traces are collected, meaning the event traces are
collected during the execution of the system, while the anal-

05" LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

ysis is usually performed upon completion of the execution.

This brings us to distributed tracing, which handles trace-
based analysis in a cloud environment, microservices, con-
tainer-based deliveries, etc. Distributed tracing follows an
interaction by tagging it with a unique identifier and staying
with the transaction as it interacts with those applications
mentioned above.

The unique identifier provides real-time visibility as the
application runs through its process. It offers insight into the
flow of requests through that microservice environment and
identifies where failures or performance issues occur within
the system.

2. Applications

A wide variety of trace apps can provide in-depth insight
into every software platform imaginable, with some being
platform-specific for systems that utilize Android, Win-
dows, and Linux, among a host of others. Below are several
widely used trace applications that incorporate a variety of
metrics and analytics for pinpointing bugs along the devel-
opment chain.

Datadog APM

The Datadog APM is a cloud-based software performance
monitor that packs many varieties of source data, includ-
ing distributed-tracing messages (Fig 2). The platform can
collect and process OpenTracing and OpenTelemetry mes-
sages, which are filed with other indicators to make insight
a breeze. It also aggregates statistics on microservice perfor-
mance and application processing environments with agents
that can target specific telemetry insight.

Beyond monitoring standard distributed-tracing mes-
sages, the Datadog APM can interface with a range of AWS
services, including the Lambda microservices platform. In
addition, it generates visual representations that show the
connections between microservices operating live in a hi-
erarchy.

New Relic APM

The New Relic APM is targeted at developers and busi-
nesses that want to monitor their microservices infra-
structure. The platform centralizes the data collected from
various sources, including distributed-tracing messages gar-
nered via OpenTelemetry, OpenTracing, OpenCensus, and
Zipkin. It also can monitor other data sources, including ap-
plication log files from infrastructure devices, along with a
list of AWS services such as Lambda, Azure, Apache, and
operating-system status reports.

As with Datadog, New Relic deploys its own agents to
provide additional insight into web and app performance,
driven by microservice actions, including browser monitors
and connection testers.

Dynatrace

Dynatrace is an Al-driven platform that utilizes the cloud,
applying machine-learning and heuristics to identify criti-

cal information from large amounts of data generated by
reporting and logging systems. The Dynatrace system takes
advantage of the OpenTrace standard and processes activi-
ties that contribute to a given application. It then tracks back
by analyzing distributed-tracing messages to identify all of
the microservices that worked on a given session for that
application.

While the platform allows developers and system manag-
ers to write and test microservices efficiently, it also moni-
tors application performance and will produce alerts if a
problem is identified within that microservice.

05" LEARN MORE @ electronicdesign.com | 3

https://www.datadoghq.com/product/
https://newrelic.com/lp/developersignup?utm_campaign=Brand-Alpha-NORAM&utm_medium=cpc&utm_source=google&utm_content=&fiscal_year=FY21&quarter=Q4>m=DEV&program=P2P&ad_type=TXT&geo=AMER&utm_term=new%20relic&utm_device=c&_bt=573823625218&_bm=p&_bn=g&gclid=EAIaIQobChMI5YiEgbzn9gIVFxPUAR0MqASCEAAYASAAEgI3R_D_BwE
https://www.dynatrace.com/monitoring/integrations/opentracing/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

