
By RAFAEL TAUBINGER, our Technical Marketing Specialist for IAR Systems

T
he quality of a product will only be as good as the
debugging capabilities that a developer has available.
Developers must be able to analyze and track the exact
root of a specific bug or understand what’s happening

on every line of code. Without such capabilities, developers
might apply workarounds most of the time, using best guesses
instead of fixing the real issues.

Depending on the maturity of the development organiza-
tion, it’s estimated that developers can spend up to 80% of
their time in debugging. If they could isolate defects before
they make it into a release build, they would have a lower
defect injection rate. Therefore, the organization’s quality

metrics could be reached much more quickly, reducing the
development efforts overall.

RISC-V Core and Debugging Capabilities
The RISC-V External Debug Support Version 0.13.21

specifies the debug interface for RISC-V based devices or
systems-on-chip (SoCs). This article will not go into details
on the interface specification that has been ratified in 2019.

The RISC-V External Debug interface in combination
with a capable debug probe like I-jet or similar probes1 en-
ables developers to examine the application’s behavior from
various angles. Together with a toolchain, the debug archi-

Working with High-Level-
Language Debuggers in
RISC-V-Based Apps
Debugging RISC-V apps can be exhaustive and at times ineffective. However, a high-
level-language debugger offers shortcuts to boost efficiency and gives you complete
control over the code and all instructions.

1. Example of a high-level-language debugger for RISC-V.

☞LEARN MORE @ electronicdesign.com | 1

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

tecture can make debugging quick, easy, and very precise.
On top, there are also ways to analyze an application even

more in details through trace. The RISC-V International or-
ganization has been working to standardize trace specifica-
tions for RISC-V.

Two main task groups have been working on the specifi-
cations. The first task group is the Processor Trace working
group3 that has a first ratified version of the standard de-
scribing the trace format, also known as E-Trace for RISC-
V. The second is the RISC-V Nexus Trace group,4 which is
working with recommendations on how to use trace as de-
fined by the Nexus IEEE-ISTO 5001 standard for RISC-V
cores.

Implementing trace IP in a device brings the possibility
to non-intrusively trace the application as it’s running. In a
detailed approach, trace is a continuously accumulated se-
quence of each instruction executed for a selected part of
the application.

There’s no speed/code penalty when using trace, so the
application will run smoothly during the process. However,
the tradeoffs are that trace adds some cost to the final sili-
con, and probes tend to be more complex. Still, the benefits
will easily outweigh that cost for embedded developers. Fur-
thermore, high-end debugging probes also supporting trace
are now available for a relatively lower cost.

General Features of a High-Level-Language Debugger for
RISC-V

A high-level-language debugger for embedded appli-
cations is designed for use with C/C++ compilers and as-
semblers providing development and debugging within the
same application. This opens up more possibilities such as
during a debug session, one can make corrections directly in
the same source-code window that’s used to control the de-
bugging. It’s also possible to inspect and modify breakpoint
definitions when the debugger isn’t running, and breakpoint
definitions flow with the source code while editing.

The extensive debug information for the debugger gen-
erated by the build tools (ELF/DWARF output with debug
symbols), combined with the RISC-V External Debug Sup-
port Version 0.13.2, results in good debugging possibilities
(Fig. 1).

Taking a closer look, it’s possible to observe that a high-
level-language debugger allows for switching between
source and disassembly debugging as required, for both C
or C++ and assembler source code.

In addition, compared to traditional debuggers, with
which the finest granularity for source-level stepping is line
by line, a high-level-language debugger provides a finer level
of control by identifying every statement and function call
as a step point. This means that each function call inside ex-
pressions, and function calls that are part of parameter lists

to other functions, can be single-stepped. This is particularly
useful when debugging C++ code, where numerous extra
function calls are made, for example, to object constructors.

Furthermore, the high-level-language debugger break-
point system allows for setting breakpoints of various kinds
in the application being debugged, making it possible to
stop at locations of particular interest. Examples include set-
ting breakpoints to investigate whether the program logic
is correct or investigating how and when the data changes.

Likewise, for variables and expressions, there’s a wide
choice of features. It’s possible to monitor values of a speci-
fied set of variables and expressions, continuously or on de-
mand. Or one can choose to monitor only local variables,
static variables, etc.

Moreover, when an application is executed in a high-lev-
el-language debugger, it’s possible to view the elements of li-
brary data types such as STL lists and vectors. This provides
a very good overview and debugging opportunities when
working with C++ STL containers.

Again, the compiler generates extensive call stack infor-
mation. This enables the debugger to show, without any run-
time penalty, the complete stack of function calls wherever
the program counter is situated. It’s allowed to select any
function in the call stack, and each function can obtain valid
information for local variables and available registers.

Finally, RTOS awareness offers a high level of control
and visibility over an application built on top of an RTOS.
It displays RTOS-specific items like task lists, queues, sema-
phores, mailboxes, and various RTOS system variables.
Task-specific breakpoints and task-specific stepping make it
easier to debug tasks.

Breakpoints and the Essence of Debugging
The fact is that developers can’t live without breakpoints.

With a high-level-language debugger, various types of
breakpoints can be set in the application to be debugged,
which enables stopping at locations of particular interest. It’s
possible to set a breakpoint at a code location to investigate
whether the program logic is correct, or to get trace print-
outs.

Beyond code breakpoints, additional breakpoint types
might be available. For example, it might be possible to
set a data breakpoint to investigate how and when the data
changes. It also lets the execution stop under certain condi-
tions, which can be specified.

The breakpoint can trigger a side effect, too—for instance,
executing a macro function by transparently stopping the
execution and then resuming. The macro function can be
defined to perform a wide variety of actions, such as simu-
lating hardware behavior. All of these possibilities provide
a flexible tool for investigating the status of the application.

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

Breakpoints Supported in a High-Level-Language De-
bugger

Different types of breakpoints can be used to investigate
different types of issues, or even be combined for the best
results. Let’s expand and exemplify the most common use
cases.

The code breakpoints are used for code locations to in-
vestigate whether the program logic is correct or to get trace
printouts. Code breakpoints are triggered when an instruc-
tion is fetched from the specified location. If the breakpoint
is set on a specific machine instruction, the breakpoint will
be triggered, and the execution will stop before the instruc-
tion is executed.

Also, the log breakpoints provide a convenient way to add
trace printouts without having to add any code to the ap-
plication source code. Log breakpoints are triggered when
an instruction is fetched from the specified location. If the
breakpoint is set on a specific machine instruction, the
breakpoint will be triggered, and the execution will tempo-
rarily stop and print the specified message in the debug log
window.

Figure 2 shows the breakpoint usage in a RISC-V high-
level-language debugger. Notice that all breakpoints can be
disabled and kept in the original locations for later use.

The data breakpoints are primarily useful for variables
that have a fixed address in memory. If a breakpoint is set on
an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this loca-
tion is only guaranteed for small parts
of the code.

Data breakpoints are triggered when
data is accessed at the specified location.
The execution will usually stop directly
after the instruction that accessed the
data has been executed.

Furthermore, data log breakpoints
are triggered when a specified memory
address is accessed. A log entry is writ-
ten in the data log window for each ac-
cess. Using a single instruction, the mi-
crocontroller can only access values that
are four bytes or less.

A high-level-language debugger also

supports immediate breakpoints, which
will halt instruction execution only
temporarily. Thus, a macro function can
be called when the simulated processor
is about to read data from a location or
immediately after it has written data.
Instruction execution will resume after
the action. This type of breakpoint is
useful for simulating memory-mapped

devices of various kinds (for instance serial ports and tim-
ers).

Finally, it’s worth mentioning that the trace start trigger
and trace stop trigger breakpoints, which start and stop
trace data collection, is a convenient way to analyze instruc-
tions between two execution points. Trace breakpoints are
only available for probes and devices supporting a RISC-V
trace implementation.

Monitoring Stack-Memory Usage
The handling of the stack is one of the major challenges

for embedded software developers. A proper configuration
of the stack is essential to the system stability and reliability.
If the stack size is too small, an overflow situation could oc-
cur. On the other hand, setting the stack size too large means
a waste of RAM resource, which could be limited in some
RISC-V-based embedded systems.

A professional development tool should make it possible
to estimate stack usage via the compiler and linker, and con-
trol and monitor it via the debugger.

Figure 3 shows an example of monitoring a stack. When
the application is first loaded, and upon each reset, the
memory for the stack area is filled with the dedicated byte
value, e.g., 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched
from the end of the stack until a byte whose value isn’t 0xCD
is found, which is assumed to be how far the stack has been
used.

2. Breakpoint usage in a RISC-V high-level-language debugger.

3. Shown is an example of monitoring stack-memory usage.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

The light gray area of the stack bar represents the unused
stack memory area, whereas the dark gray area of the bar
represents the used stack memory. For this example, only
44% of the reserved memory address range was used, which
means that it’s worth considering decreasing the size of
memory.

Although this is a reasonably reliable way to track stack
usage, there’s no guarantee that a stack overflow is detected.
For example, a stack can incorrectly grow outside its bounds
and even modify memory outside the stack area—without
actually modifying any of the bytes near the end of the stack
range. Likewise, the application might modify memory
within the stack area by mistake.

How Can Trace Make the Difference?
Trace is known to help make a quick diagnosis of com-

mon problems that are nearly impossible to find without it.
By using trace, it’s possible to inspect the program flow up
to a specific state, for instance an application crash, and use
the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have ir-
regular symptoms and occur sporadically.

Using trace requires that the target system can generate
trace data. Once generated, the high-level-language debug-
ger can collect it via the trace probe,1 and developers can
visualize and analyze the data in various windows and dia-
log boxes.

Figure 4 depicts how trace-related windows are utilized,
including trace instructions, function trace, and a graphical
timeline with all function calls and timing information.

When trace data is collected, it’s possible to perform search-
es in the collected data to locate the parts of the code or data
that might be interesting, such as a specific interrupt or ac-
cesses of a specific variable. And code coverage functionality
available with trace is useful when test procedure is designed
to verify whether all parts of the code have been executed.

It also helps to identify parts of the code that aren’t reach-
able. This is highly valuable and made mandatory by the
safety standards when working with critical safety applica-
tions.

Trace functionality is extremely valuable and explored in
detail in the article Trace Techniques for RISC-V – How to
Use it Efficiently.”4 It could help find those “million-dollar”
bugs in your application.

Get Help from the Right Debugging Tools
Only those who have ever experienced a hard fault in an

RISC-V-based design know how difficult and frustrating it
can be to track down the ultimate issue. It’s not uncommon
to spend several days trying to isolate the issue and come
up with a fix or end up with a poor workaround. Some bugs
might be difficult to catch and only pop up randomly and in
elaborated circumstances.

A high-level-language debugger with useful functional-
ity like complex and conditional breakpoints, data and log
breakpoints, macros, stack monitoring and trace on top are
shortcuts that can boost the efficiency while gaining com-
plete control of every line of code and every single instruc-
tion executed in the complex application.

By using the right debugging tools (that all developers de-
serve) the right way, it’s possible to reasonably shorten the
development cycle by fixing bugs for real.

References
1. https://riscv.org/exchange/software/
2. https://riscv.org/wp-content/uploads/2019/03/riscv-de-
bug-release.pdf
3. https://lists.riscv.org/g/tech-trace
4. https://lists.riscv.org/g/tech-nexus
5. https://riscv.org/blog/2020/05/trace-techniques-for-ris-
c-v-how-to-use-it-efficiently-robert-chyla-and-thomas-an-
dersson-iar-systems/

4. IDE and trace visualization from trace information provided by the device and in sync with the C/C++ code.

☞LEARN MORE @ electronicdesign.com | 4

https://riscv.org/exchange/software/
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://riscv.org/wp-content/uploads/2019/03/riscv-debug-release.pdf
https://lists.riscv.org/g/tech-trace
https://lists.riscv.org/g/tech-nexus
https://riscv.org/blog/2020/05/trace-techniques-for-risc-v-how-to-use-it-efficiently-robert-chyla-and-thomas-andersson-iar-systems/
https://riscv.org/blog/2020/05/trace-techniques-for-risc-v-how-to-use-it-efficiently-robert-chyla-and-thomas-andersson-iar-systems/
https://riscv.org/blog/2020/05/trace-techniques-for-risc-v-how-to-use-it-efficiently-robert-chyla-and-thomas-andersson-iar-systems/
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

