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INTRODUCTION

The cost of developing new
chipsissignificant. Verification
software and methodologies
are important because they
help find issues before silicon
is generated. Simulation and
verification tools are used
to check everything from
timing closures to thermals.
This ebook includes articles
from Electronic Design that
target these aspects of chip
verification especially those
that deal with power and
thermal considerations.

Bill Wong
Editor,
Senior Content
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Design & MWRF
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CHAPTER 1:

The Need for a New Power-
Modeling Approach

NINAD HUILGOL, Founder and CEO, Innergy Systems

Power’ once considered ow power is now a fundamental performance metric in system-on-chip (SoC) design.

Nanometer-scale SoC design complexity—a mix of processor cores, memories, bus-

dll a"-but aﬂerthﬂught es, and peripherals with a software stack controlling its operation—runs into tens or

| . even hundreds of millions of logic gates, making power simulation and analysis a
n System d95|g“ and daunting task (Fig. 1). The result is slow full-chip power simulations.

. An SoC’s power consumption can change in nanoseconds depending on software
We" behmd perfﬂrma“ce activity and hardware workloads. That means using design rules, performance of prior
generation designs, and methods to estimate power consumption will not give a design’s
and area, now leads as . il . .
' real power footprint. Power hot spots affect reliability, and the choice of chip package can
- H P cause catastrophic failure through thermal runaway. A more precise analysis is essential
the first consideration in P g Y P Y

PPA (power, performance,

On-chip RAM

ROM
drea).
UART
External Memory Protocol
Interface Bridge
GPIO

DMA Controller Bus Arbiter

Interrupt
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1. Complex SoC designs are a mix of processor cores, memories, buses, and
peripherals with a software stack controlling its operation.
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to ensure correct operation and understand a design’s real power constraints.

The need to simulate and control dynamic power consumption across a range of stim-
ulus representing real-world conditions and workloads is exploding, along with resources
in the SoC deployed to complete a workload task. Tasks and their associated power foot-
prints are managed through hardware or software supervision, control of the number of
processors and process threads, and through dynamic changes in voltage, frequency, and
bus activity. If a task can be completed using additional clock cycles with fewer hardware
resources, then peak power consumption is reduced (Fig. 2).

Power Power | Di/Dt
Peak Power
: Energy
Task A Average Power
Task B
= Time » Time
Task A: Dissipates more power but runs faster. The power profile changes over time, depending on leakage and dynamic power

Task B: Uses less power but runs longer.

1080P Single

Frame Power
Analysis (GPU)
17 us

Full-Chip RTL
Simulation

6 days

variations, i.e. depending on specific power modes activated and on different
switching activity happening.

2. The power footprint changes depending on task and level of activity.

Challenges with Today’s Power-Analysis Tools

Current power-analysis solutions are focused on the logic gate level and can’t provide
the throughput to realize comprehensive power visibility at the software level in an SoC.
Even hardware emulation can’'t adequately simulate power consumption for a complete
workload task that spans microseconds or milliseconds.

SoC designers have a suite of gate-level and RTL power-analysis tools available for
determining power consumption at the block or unit level. Gate-level tools offer sign-off
precision while RTL tools provide faster throughput with an accuracy loss that can exceed
10%. For a full-chip SoC simulation, millions or billions of nodes are analyzed for cycle-ac-
curate dynamic power behavior.

RTL tools can’t process a full SoC stimulus set without days of runtime (Table 1). Due
to the lack of speed, engineers typically use only 2% to 3% of the total available stimulus
for power analysis (Fig. 3). Hardware emulation can only process a portion of a stimulus
workload; it's not a general-purpose solution.

Instead of running the full SoC stimulus available, designers are forced to pick and

Table 1: This table

Full-Chip  Identification Resimulation of Analysis to Identify highlights the total
Emulation of HotSpots  Blocks Root Cause time needed for root

5 hours 1 day 1-2 days 1-2 days cause analysis for

each approach.
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choose where and when to
simulate. This is risky since
incomplete power verification
inevitably invites chip failures,
respin, and late software work-
arounds that can compromise
performance and delay the final
tapeout.

Another cause of power-anal-
ysis delays is identifying root
causes of power consumption
in the SoC. At the block level,
various functions or tasks might ® Used
be responsible for increased
power consumption. At the full
chip/SoC level, different design 3. Engineers typically use only 2% to 3% of the total
blocks can interact to produce available stimulus for power analysis.
power-density peaks. With the
tools currently available, power
reports don’t estimate power consumption of the functions/tasks or features, which then
necessitates lengthy debug and analysis of active signal waveforms.

The process of getting power reports, then performing the waveform analysis to identify
root causes, can have multiple iterations, increasing the delay in analysis.

Power Stimulus Usage With Other Tools

B Unused

What-If

Early “what-if” power analysis is another area that needs attention in every SoC design
before making major architecture and design choices. For example, a design architect
needs to get early visibility into power consumption by simulating varying transaction
density, the effect of increased cache misses, increasing bus throughput for power vs.
performance analysis, or changes in voltage and frequency.

“What-if” analysis is an essential step in improving and optimizing a design’s power foot-
print. Consider the following scenario where peak dynamic power reduction at the full-chip
level is achieved by stretching the time to complete a task. This is a classical tradeoff that
designers perform to understand where power savings can be achieved, improving battery
life and reliability, and reducing packaging and cooling costs.

Current power-analysis solutions require numerous manual steps to accomplish many
“what-if” power exploration efforts. For example, if the “what-if’ power exploration scenario
stretches out the time required to complete cer-
tain tasks to reduce instantaneous power peaks,
and the time spent analyzing power peaks in a RTL Simulations 9-11 days
GPU (Table 2). It further adds time spent mod- -

. . L Emulation 4-6 days
ifying the RTL code and re-simulating in a loop
that can have many iterations. Table 2: The table illustrates the time

Given the large number and duration of SoC typically spent analyzing power hot
stimuli, “what-if” analysis is difficult at an SoC’s spots (power peaks) in a GPU at full-
block or unit level. It's almost impossible with the chip level.
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current power solutions in the full-chip context with a mix of processors, bus activity, and
peripherals.

Some SoC designers have taken time to build custom script-ware to do different “what-
if” scenarios, explore changes in software activity and hardware resource allocation, and
then collect the relevant data and display the desired metrics. These home-grown solu-
tions require effort to build and maintain, are design-specific, and take days of runtime to
get results.

A new power modeling approach is needed to eliminate the SoC power simulation gap
and reduce computation time so all full-chip SoC stimulus scenarios can be used to ensure
a design’s power coverage is 100% and not 2% to 3%. This modeling approach must have
precise correlation with results from power sign-off tools.

A tool that shows the root cause of a power issue early in the design flow and highlights
those actions contributing to a power hot spot vs. changes in software activity and hard-
ware loads is imperative.

to view this article online, U5 click here
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The new Al-powered
Verisium platform from
Cadence helps chipmakers
identify problem areas in
designs faster.

Dashark | Dreamstime

CHAPTER 2:

Al Enters the Verification
Stage of Chip Design

JAMES MORRA, Senior Staff Editor, Electronic Design

adence rolled out its latest Al-powered electronic design automation (EDA) platform
called Verisium, which promises to ease the amount of time and resources that chip-
makers put into the verification process.
The Santa Clara, California-based company said MediaTek and Samsung are
among the first companies using Verisium to identify bugs in system-on-chip (SoC)
designs and diagnose what’s causing things to go wrong.

Modern processors are comprised of billions of transistors that must fit into squares
of silicon as small as a fingernail. How everything is arranged on the chip and how (and
where) it's placed within a system impacts metrics like performance, power efficiency, and
even cost. As a result, Cadence has started adding Al to its software tools to automate
more aspects of the IC design process.

Verisium is a complement to its Cerebrus Intelligent Chip Explorer platform for
Al-enhanced implementation and Optimality Intelligent System Explorer for Al-powered
system-level analysis.

A Painstaking Process

The purpose of verification is to identify and resolve chip design defects in a pre-man-
ufactured state. It's the end-stage process of testing the quality of the design and that
everything inside works as planned in a product.

The verification process usually starts after you complete the chip design. The hardware
is simulated with software code in a hardware description language (HDL) used to test the
various building blocks of the SoC. The test bench effectively creates a virtual version of
the SoC that can be supplied with signals. Subsequently, you can measure and evaluate
the responses from the SoC to figure out whether the SoC or IP inside has any issues.

Cadence said Verisium works with its existing verification engines: Palladium for emula-
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tion, Protium for prototyping, Xcelium for simulation, Jasper for formal verification, and its
Helium virtual and hybrid studios.

Previously, you would have to run every one of these engines separately for every step
in the verification process—what Cadence calls “a single-run, single-engine” approach.
Verisium, on the other hand, leverages big data and Al to optimize multiple runs of multiple
engines over the full SoC design and verification campaign.

As SoC complexity continues to rise, the verification process tends to take more time
and resources than any other silicon engineering task. And so, as Cadence tells it, verifi-
cation is ripe for improvement using Al.

Verisium also runs on top of Cadence’s new “JedAl” platform, which pools vast quan-
tities of data stemming from the chip design process, analyzes it to identify areas of
improvement, and even stores it for future use.

Cadence said JedAl is a platform in the sense that its Al-powered offerings—Verisium,
Cerebrus, and Optimality—and third-party silicon lifecycle management systems sit on top
of it. When it comes to using Verisium, its verification tools feed data stemming from the
verification process, ranging from waveforms, coverage, and reports to log files, into the
JedAl platform, where it’s all stored and evaluated.

Then, JedAl builds machine-learning models and mines other proprietary metrics from
the data, sharing what it learns with the company’s Verisium to identify potential areas of
improvement or root-cause issues.

“As chip design size and complexity has increased exponentially over the past decade,
the volume of design and verification data has also increased with it,” said Venkat
Thanvantri, Cadence’s VP of Al R&D. “Previously, we saw that once a chip design project
was completed, the valuable data was deleted to make way for the next project. There are
valuable learnings in the legacy data, and the Cadence JedAl Platform makes it easy for
engineering teams to access these learnings and apply them to future designs.”

Starter Apps

Customers can get started with several apps when they use Verisium. Some of them
tap into machine learning, both supervised and unsupervised, including reinforcement
learning, while others don'’t.

* Verisium AutoTriage: Builds machine-learning models that help automate the repet-
itive task of sorting through failures to find the worst ones. To do so, it predicts and
classifies test failures with common root causes.

* Verisium SemanticDiff: Uses algorithms to compare source-code revisions of IP
building blocks or the full SoCs. The app classifies these revisions and ranks those that
are the most disruptive to the system’s behavior to help pinpoint potential bug hotspots.

 Verisium WaveMiner: Applies Al engines to analyze waveforms from multiple verifica-
tion runs and determine which signals, at which times, are most likely to represent the
root cause of a test failure.

* Verisium PinDown: Integrates with the Cadence JedAl Platform and other indus-
try-standard tools to build machine-learning models of source-code changes, test
reports, and log files to predict the source-code check-ins that are most likely to have
introduced failures.

* Verisium Debug: Natively integrated with the JedAl Platform and other Verisium apps,
this app uses Al for the purposes of root-cause analysis, along with support for the
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simultaneous and automatic comparison of passing and failing tests. The debug solu-
tion spans from IP to SoC and from single-run to multi-run verification.

* Verisium Manager: Brings Cadence’s full IP and SoC-level verification management
solution with verification planning, job scheduling, and multi-engine coverage onto its
JedAl platform. It uses Al technologies to improve how efficiently data centers run
verification. This app integrates directly with Cadence’s other Verisium apps, opening
the door for pushbutton deployment of the complete Verisium platform from a unified
browser-based management console.

Al Time Saver

Paul Cunningham, senior vice president and general manager of Cadence’s system
and verification division, said Verisium would help chip companies make more informed
decisions during the design and verification process. But the biggest impact is apparently
on the productivity side of things.

The company said its customers are already using Verisium to triage failing tests more
than 3X faster than they could previously, with reductions in the time it takes to determine
the root-cause failure by up to 75%.

Given that failure analysis and debug represent 50% (or in some cases more) of the time
chip firms devote on verification, Cadence claimed the Al-driven Verisium tool could result
in major improvements in productivity.

to view this article online, U5 click here
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Today’s high-performance,
power-hungry applications
require a new approach
to power verification.
Emulating power
pre-silicon will save
weeks of simulation
experimentation,
delivering a more accurate
understanding of power
behavior in real-world

apps.

GOOb | Dreamstime

CHAPTER 3:

Pre-Silicon Power Verification
for Power-Hungry Applications

DR. JOHANNES STAHL, Senior Director, Product Marketing, Emulation, Synopsys

G. Hyperscale data centers. Mobile. Smart everything. These are just a few examples
of today’s high-performance, power-hungry, or power-constrained applications. Miss-
ing your SoC power goals and power bugs on designs like these and others could pack
a wallop on overall design success, your bottom line, and time to market. So, how do
you optimize for peak and dynamic power and reduce leakage in this era? It's time to
shift left via fast power emulation technology and verify the power for designs pre-silicon.

Shifting the Focus in the Power-to-Performance Equation

Over the last 10 years, chip design has been about how fast chips could compute. Each
gigahertz of speed represented billion-per-second core operations, a stand in for how fast
the arithmetic logic units (ALUs) could process data. The higher the gigahertz, the better,
which unfortunately also equates to more compute power consumption.

Historically, chip speed was measured by single- and double-digit percentage improve-
ment rates. For instance, if a chip could run 10% or 20% faster than its predecessor or a
competitor, that was considered pretty good.

Today, while clock speed isn’t increasing very much, next-generation chips can process
many times more data than previous generations through massive parallelism, an entirely
different scale of performance improvement. And, as the area of chips becomes smaller,
the tradeoffs between compute performance and power are more substantive. That's why
in chip design, where achievements in performance are already vast, the conversation is
shifting to include a bigger focus on power optimization.

Power-Hungry Designs Drive a New Frontier in Power Verification
Because today’s complex designs commonly have billions of gates, power management
can be your Achilles heel. The bigger the design, the bigger the risk if you fall short in
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managing your power profile well. Some of the applications driving the conversation on
power include self-driving cars, networking, mobile, virtual reality, and image recognition—
anything that requires processing of massive amounts of data. Here are examples of why
some key design categories are putting greater emphasis on power:

* GPUs: Running billions of clock cycles per second, power simulation that runs only at
key points over time falls short.

* Al: Because artificial intelligence is so new, power profiling can be tricky, but it's the
holy grail for Al SoC designers to be able to tout both power efficiency and fast com-
pute performance.

» 5G: Parallel processing at high frequencies—especially in radio-head semiconduc-
tors—makes power efficiency critical.

* Hyperscale data centers: Billions of gates and complexity in the software workload
to boost data throughput to warp-speed levels, with energy efficiency, has put power
management front and center.

* Mobile: Demand for battery-life longevity in a tiny form factor while performing com-
plex, image-heavy tasks makes power efficiency critical in next-generation designs.

While it’s true that these applications have helped create the demand for the exponential
leaps in processor speed and performance, they also demand innovation when it comes
to power management.

In addition, the climate crisis is making the focus on power an existential one, bringing
consumer and regulatory pressure to bear. All of this change requires a lens of precision
on power verification—critical to optimizing your power budget and bringing power down.

Why Emulation is the Power Verification Answer for Next-Generation Designs

Designers typically have a phased approach to their work, including architectural explo-
ration, register transfer level (RTL), physical design, and verification. Traditionally, power
analysis with realistic software workloads could only be done post-silicon. The outcome of
weeks of experimentation to approximate power consumption is heavily influenced by the
experience of the engineer, as well as trial and error.

Looking for optimization opportunities in such a way is not only tedious and time-con-
suming, but accuracy in real-world scenarios is hit and miss. With large, dynamic applica-
tions, it's impossible to simulate real-world workloads.

Let's face it, it's easier, quicker, and more budget-friendly to resolve your power issues
earlier in the software development lifecycle. If you could detect the power-hungry activities
and leakage, optimize dynamic power, and manage for peak power, it would help eliminate
risk. Emulation pulls back verification to much earlier in the design process: pre-silicon.

Emulation imitates the actual hardware behaviors and maps the design. It accurately
shows the system activity flow so that designers can analyze and benchmark average
power for an accurate power profile. Emulation speeds up verification by 1,000-fold over
simulation, enabling an exhaustive number of test cycles—millions or even billions of
cycles. The result is a much more accurate power profile, with diagnostics showing aver-
age power and the components where peaks are high.

Emulation that Can Verify Power in Hours, Pre-Silicon
Here are a few things to think about when choosing an emulation solution for power
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verification. A good emulation system should use real-life workloads pre-silicon and give
you power verification within hours. Make sure the design size and emulation cycles can
be parallelized, scaling design cycles and tying them to emulation cycles.

A software-driven, low-power emulation solution should reduce overall static and
dynamic power consumption. And it will offer maximum compute performance in multiple
iterations per day to deliver actionable results. You will be able to identify peak power and
improve your design’s dynamic and leakage power profiles, easily and early.

Emulation solutions must use fast emula-

Power Emulator tion hardware technologies for quick anal-

ysis. They should have adequate capac-

W W ity and the ability to run in key modes
—— for debugging and pass/fail accuracy (see
$ $ ¥ figure).

Realistic Software
Workload

Multi-Billion
Gate
Design
Emulation

What’s Next in the Power-

» Verification Game?

Peak _ —— Gartner projects that new hyperscale
= : data-center infrastructure spending will
grow by 6% this year. Also this year, 5G
infrastructure revenue will grow by 39%.
. The mobile-device install base will reach
IR Drop g=— —— e 6.2 billion devices, and with COVID nor-
malizing a new world of remote everything
as well as a hybrid work model, that growth

Average

Leakage

Synopsys ZeBu® Empower can only continue. Finally, Al will gener-

Critical Regions ate $2.9 trillion in business value in 2021.
Complex, high-performance, power-hungry

Billiows of Cycles N i l applications are not only here to stay, but
M l bbb s they're also taking us to our future.

Shown is an example of
power verification using

With big data only becoming bigger and
fueling more applications, power is certainly the next big frontier in SoC designs. The

emulation. (Source: Synopsys) good news is that more accurate, faster power analysis delivering actionable results

sooner than ever before is available now. In the future, we can look forward to power
analysis in multi-stages of design and development, including utilization of IP blocks with
power-consumption models ready to go. With a focus on better methods for power man-
agement, the performance of power-hungry applications will only get better.
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Axiomise’s Dr. Ashish
Darbari dispels a host of
myths to highlight the
advantages of formal
verification for IC design.
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CHAPTER 4:

11 Myths About Using
Formal Verification

DR.ASHISH DARBARI, Axiomise

All images courtesy of Axiomise

he advantages of formal verification are well-known and accepted in semiconductor
development. This wasn’t always the case; a few decades ago, formal technology was
widely regarded as an exotic technique requiring “magic” to be used successfully on
a real project. Over this span, many success stories of truly scary bugs found before
signoff have helped to raise awareness of—and confidence in—formal verification.

The ability to mathematically prove exhaustively that a chip design meets a set of asser-
tions is a clear contrast with simulation, which can’'t come up with proof of bug absence.
If proof can’t be achieved due to legal design scenarios that violate the assertions, the
formal tool presents these as counterexamples and provides information to help designers
debug them. Users provide constraints that keep the formal analysis within legal bounds,
ensuring that counterexamples are real failure scenarios that could occur in post-silicon
chip usage.

This all sounds great, so why isn’t everyone running formal verification? It's used suc-
cessfully every day by thousands of individuals at hundreds of chip and system compa-
nies, but some designers and verification engineers are still reluctant. This may be partly
due to some persistent myths about formal technology that make it seem too hard or too
expensive. This article examines these myths and explains why they should not be cause
for concern.

1. You need a PhD to use formal verification.

This myth was arguably true for first-generation formal tools, which were designed for
academic purposes. They required learning an obscure mathematical notation to specify
assertions and constraints. The tools needed lots of manual guidance, so most users
were, in fact, professors and PhD students specializing in formal technology.

Consider the load value axiom for the RISC-V weak memory model. It says that for
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threads i, j, and k, if thread i performs a STORE operation followed by thread j performing
another STORE, followed by the thread k performing a LOAD, then the value retrieved
from the memory by the LOAD will be the latest value updated by the STORE. Formally,
a mathematically precise notation can express this as shown in Figure 1. However, an
average design or verification engineer may not be able to understand these notations,
which are friendly to formal method PhDs but not otherwise.

vi, j, k.
Vo, 8y, 12,8y, 8, 85 1. Example of
¥d;,d;. load value axiom
Y. for RISC-V weak

del.
oAy <lzAlo<tzs A memory mode

type(i,ly) = STORE A data(i, ty) = d, A addr(i, fy) =a A
stable(mem,a, by, o + 8g) A
thot+dg<=it A
type(j,ty) = STORE A data(j,6;) = d; A addr(j,t;) =a A
stable(mem,a, by, 8 + 8;) A
4+ 8 <=1t A
type(k, &) = LOAD A addr(k,l;) =a A
- ]

data(k, 2 + lij} = tfj

Much has changed in recent years. Assertions and constraints are usually specified with
SystemVerilog Assertions (SVA), a subset of the SystemVerilog language that designers and
verification engineers already know and use. Formal tools have become smarter and more
independent, and less reliant on user expertise. Many now offer visualization and better hints
for debugging counterexamples or helping achieve full proofs. No PhD is required.

There’s also the whole category of formal applications (apps), which generally don’t
require users to write any assertions at all. For example, a clock-domain-crossing (CDC)
tool can automatically determine where crossings occur in a chip and what assertions
must be proven to guarantee correct operation. The user only needs to provide some
information on clocks, most of which is already available in the constraint files used by
synthesis and layout tools.

2. Formal verification is hard because you need specifications
exclusive to formal.

It's not true that specifications are unnecessary for other forms of verification, such
as simulation or emulation. The firmware and driver stack in SoC emulation is already
providing the right environment to drive stimulus into the chip for testing; checkers rely
on requirements to establish what needs to happen when the tests are run. Without
specifications, verification engineers can’t write directed tests for simulation, the Universal
Verification Methodology (UVM), or functional coverage.

Formal methods are perceptibly more sensitive to specifications as the effects of poorly
defined requirements are felt more severely. Formal tests, specified as assertions, con-
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straints, and covers, produce unexpected results because formal tools drive all possible
combinations of stimulus patterns. This may result in driving spurious stimuli if the con-
straints captured from requirements aren’t accurate.

In many cases, the act of deriving requirements for formal verification from specifications
can expose bugs. In fact, a good specification is a hidden bargain for successful formal
verification (Fig. 2).

3. You can’t scale formal techniques to large designs.

This is another myth that was true for earlier generations of formal technology; users
were limited to analyzing small design blocks. Today’s formal tools have far more capacity,
and many are able to run in distributed mode on a server farm or the cloud. Formal tech-
niques and methodologies have scaled up as well.

Designers and verification engineers routinely apply formal verification to large, complex
subsystems, including verifying entire multi-threaded 64-bit processors end-to-end with
formal. Figure 3 shows an example of a bug caught by the Axiomise abstraction-based
solution in a highly parameterized network on chip (NoC) with over 1 billion gates (338

A3. This functional
bug, caught in a

Statistics [for imstance “noc_param”™|

- G r
: E::::Ei EI?E?ED {337989768) (656 property flop bits) design with more
£ Gates: G252TA6 (1017245005 ) than 1 billion
# Nets: 12423843 gates, was found
B Ports: 7 . .
F BTL Lines: 996 by Axiomise
& ETL Instamces: 3J006&6 using Cadence

F Embedded Assumptions: 4
P Embedded Adsertions: 23
# Embedded Covers: 23

JasperGold.
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million flip-flops).
Formal apps may have even more capacity since they’re focused on a single task. CDC
analysis, for example, is always run on the full chip to check the entire clock network.

4. Formal proofs take a long time to converge.

This may happen in some cases, especially when the formal test benches haven’t been
naturally designed to be optimal in performance. However, in most cases, formal proper-
ties converge very quickly.

Naturally, the run-time of formal tools depends on design size, design complexity, and
the number of assertions and constraints. There are several ways to manage the formal
process to keep run-times reasonable. Running incrementally as the design grows and
running in a distributed mode both help.

The Axiomise formal-verification training shows users how to apply a range of powerful
abstractions to make the analysis mathematically simpler. An exhaustive analysis is, by its
very nature, a big task, but users can do a lot to improve efficiency.

5. Formal techniques are only useful for building proofs.

This myth also derives from academic formal tools where the focus was entirely on
achieving full proofs. While full proofs provide the utmost confidence in design correct-
ness, formal verification adds value by finding tough, corner-case bugs such as the exam-
ple in Figure 4.

Name Groups Health Radus Time
Sk u_isa adiomise_ISA_SRLI ISA # 10 1m 265
Sk u_sa axiomise__ISA_ADDI ISA 10 2m 405
=k u_isaaiomise_ISA_SRL 154 #r 10 2m 405
=Eu u_ima axiomise_|SA_JALR I5A %10 2m dba
aRy u_ish axiomise_ISA_XORI 154 10 2m 465
“b u_isa axiomise__ISA_BEQ ISA o 10 2m 53s
=k u_ksa axiomise_|SA_BNE k I5A ¥ 10 2m 505
=xa u_isa adomise_ISA_SLTSI SET TO 1 ISA 10 am Os
Sy u_isa axiomise_1SA_BGEU 154 % 10 Am G5
wky u_saaxiomise_ISA_SLTS SET_TO 0 ISA o 10 Im s o 5 O%
=k u_isa axiomise_|ISA_XOR IS4 # 10 3m Ts
wry u ke adomise_ I1SA_SLTUIL SET TO 1 ISA £ 10 am 13s H
=k u_isaaxiomise__|ISA_OR 154 o 10 Am 13s eXhaUStWe|}’
= u_ksa adomise__ISA_ORI IS4 ¥ 10 3m 19s .
=ry u_ima axiomise_ 1SA_SLTUI_SET_TO 0 ISA #r 10 3m 102
SR u_sa adomise__ISA_ANDI ISA o 10 3m 258 proven | n |655
=k u_isa adomise_ISA_SLL) 154 * 10 Am I5s .
24 u_fsa aviomise_|SA_SLTS_SET_TO_L I1SA * 10 3m 27s thaﬂ 30 mi r‘]!
“ry u_ia axiomise_|SA_SLTU_SET_TO_1 ISA # 10 am 27
=k u_isaaxiomise_|ISA_BLTS ISA 10 Im 325
= y_isa axiomise__|ISA_SRAJ ISA *r 10 3m 32s
=ru u_isaaxdomise_|SA_SLTS_SET_TO_D 15A # 10 3m 335
=k u_ e axiomise_ISA_SLTU_SET_TO_O ISA #r 10 Im 33s
=k u_isa.axiomise__ISA_JL 154 # 10 4m 285
=k u_isa adomise__|SA_LUI 154 # 10 4m 32s
=r u_isa axiomise_ |SA_BGES 154 £r 10 4m 455
SE y_reaAxiomise_ISA_SRA 1SA * 10 4m 455
ok u_isaaxiomise__ISA_BLTU ISA “r 10 4m 525
= u_isa aviomise_|SA_ADD ISA * 10 4m 58s
=Ea u_isa axiomise_|SA_AND ISA # 10 4m 58
=R u_aadomise_1SA_SUB 154 w0 [
=E u_isa aodomise_1SA_SLL 154 ¥r 10 5m 31s
=k u_isa axiomise_ISA_ML_rel_sddress 1SA 10 24m 135

4. End-to-end RISC-V formal verification: 50% complete in under 30 minutes using the Axiomise formallSA app and,

in this case, QuestaPropCheck from Siemens.
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5. BEQ instruction failure due to a bug in ibex RISC-V core, triggered by incoming debug requests only when the FSM
controller is in the DECODE state.

The waveform in Figure 5 shows the bug caught in ibex RISC-V core using the Axiomise
formal-verification solution. This bug will only ever appear in the design if the debug
request arrived in the same clock cycle when the controller FSM was in DECODE state.
The bug will not show up in any other state. The precise timing of the arrival of debug will
make this kind of bug very hard to catch with dynamic simulation, where controllability of
stimulus and exhaustive coverage would be a major challenge.

6. If you have run the simulation with 100% coverage, you don’t need
formal techniques.

As noted earlier, formal verification is great at finding corner-case bugs missed by sim-
ulation or emulation. In addition, this myth rather overstates the value of coverage met-
rics. They are extremely valuable in identifying parts of the design not yet exercised, and
there’s no chance of finding all bugs in such a case.

However, also as noted earlier, simulation can’t establish exhaustive mathematical
proofs. Even 100% functional coverage doesn’t guarantee no bug escapes—it just con-
firms the exercise of the parts of the design covered by the selected metrics. The formal
analysis will consider all possible behavior and is highly likely to find additional bugs.

7. Formal techniques are only useful for finding corner-case bugs.

Many formal users swear by formal for bug hunting, sometimes to such an extent that
their management believes that formal is only good for bug hunting. One of the greatest
benefits of formal is in establishing that bugs do not exist in the design with respect to the
formally proven requirements.

Consider RISC-V, for example. A lot of the processors previously verified with simulation
end up having bug escapes that are then caught by formal. Formal can prove beyond
doubt that once bug fixes have been applied, there are no bugs remaining as formal prop-
erties prove on all reachable states of the design (Fig. 6).
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6. The dashboard shows how the Axiomise formallSA app, working with JasperGold in this case, can be used to find

bugs and build architectural proofs of correctness for end-to-end verification of 64-bit RISC-V processors.

It's certainly true that there’s no better demonstration of formal power than finding a
deep, scary bug that would have required a chip turn. A verification engineer saying “we
never would have found that in the simulation” quickly makes believers of formal.

But formal verification can find all sorts of bugs, including those typically uncovered
in simulation, more rapidly. For this reason, today’s chip projects often contain multiple
blocks, some of them quite large, verified formally without any block-level simulation.

8. Once you have applied formal techniques, you don’t need to simulate.

Typically, every formal-verification environment uses constraints to describe the inter-
faces. These constraints need to be validated in simulation to check if they were modeled
and interpreted correctly for formal verification.

Also, formal is usually applied earlier in the flows to get the maximum value for shift-
left of verification. By the time the design has matured with more blocks being coded, it's
possible that some of the interface constraints may no longer be valid, so they must be
re-validated in simulation.

Furthermore, simulation and formal are valuable in finding bugs related to hardware-soft-
ware interactions that occur only in simulation or emulation when the software is running
on embedded or host processors. Similarly, bugs along the analog-digital interface may
only be found when running mixed-signal simulations.

9. Formal techniques don’t offer any coverage metrics, so it’s hard to
know if you have done enough.
This is manifestly untrue since proofs provide one form of coverage metric. Knowing that
100% of the assertions in a design can never be violated is clearly a strong statement.
However, all modern tools now produce a code-coverage view in relation to proven
asserts in formal showcasing (Fig. 7). It shows which lines of design code were activated
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Instance Ex. |Checker Coverage @
&l cv32e40p_core (cv32e40p_core) I 15288/18692 (81.79%)
# U sleep_unit_i (cv32e40p_sleep_unit) - 36/47 (76.60%)
+ o if_stage._i (cv32e40p_if_stage) ] 21452552 (84.05%)
= ¢ id_stage_i (cv32e40p_id_stage:(PULP_XPULP=0,WAPUTYPE=1)) -] 4760/5599 (85.02%)
= { ex_stage_i (cv32e40p_ex_stage) -] 4672/5210 (89.67%)
+ © load_store_unit_i (cv32e40p_load_store_unit) ] 100371075 (93.30%)

0 cs_registers_i (cv32e40p_cs_registers)

I | 152412472 (61.65%)

7. Checker coverage shown by the JasperGold Coverage app for the 32-bit cv32e40p processor verified with
Axiomise formallSA app for RISC-V.

and run during the formal proof.

Formal tools were used previously to evaluate code coverage in the absence of any
checkers in formal. They could still provide insights into unreachable and dead code, pos-
sibly as a result of conflicting design code or configurations. Formal tools also are used
extensively to prove that unreachable code-coverage holes in UVM environments may be
always unreachable or may find a coverage gap in UVM.

The six-dimensional coverage flow developed by Axiomise describes how coverage for
formal can be computed both qualitatively and quantitatively (Fig. 8).

Stimuli Checker Mutation 8. Six dimensions

Processor coverage targets Checker completeness

{qualitative)

Assertion coverage (metrics)

(qualitative) Property-driven design coverage (metrics) of formal
coverage.

Over-constraint analysis Scenario coverage (metrics)
{qualitative)

10. Simulation and formal verification can’t be combined.

As discussed earlier, the two verification approaches are complementary. Each can
find certain types of bugs that the other likely will not. No chip project runs one without
the other. Think of this as assuming interface assumptions to guarantee bug absence for
blocks in formal verification and then validating assumptions in simulation to close the
complete loop.

In addition, using formal to establish coverage gaps in simulation is a great example
of combining the two technologies. Many project-management tools that track coverage
results over time gather metrics from both simulation and formal verification to present
a unified view of verification progress. This helps to convince the boss that the team is
meeting the requirements of metrics-driven verification.

11. Formal techniques are only useful for functional verification.

The general concepts of assertions, constraints, exhaustive mathematical analysis,
proofs, and counterexamples show up in areas of chip development beyond checking
functional correctness.

Today, formal tools are extensively deployed for verifying architectural requirements,
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9. Formal

verification’s

Micro-architectural pervasive usage.

Architectural

Security

X-propagation

Lockstep
verification

CDCs, connectivity, power, deadlock, micro-architectural functional requirements, safety,
security, and X-propagation (Fig. 9).

Arecent example presented at DAC 2021 showed how formal verification could be used
to find security vulnerabilities (confidentiality, integrity, and availability) in RISC-V cores
and rank them with a vulnerability score. The greatest challenge with security is dealing
with unknown attack scenarios. This is where formal really shines as it introduces all sorts
of input stimuli in an attempt to be exhaustive, finding scenarios that designers would
normally never consider.

The act of deploying formal forces designers and architects to think of exploiting vul-
nerabilities during early stages of architecture development, avoiding any ugly surprises
downstream.

Formal techniques are central to the successful design, verification, and implementation
of today’s chips. With the 11 myths dispelled, no one should hesitate for a second about
embracing formal verification and other formal technology.
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