
By GILLES BACKHUS, Co-Founder and VP of AI,
Recogni, www.recogni.com

H
ardware/software co-design attempts to opti-
mize the hardware and software components of
a complex electronic system while satisfying the
project’s goals and design constraints, which usu-

ally encompass performance, cost, and power consumption.
This article discusses the five core principles that helped

Recogni build a geographically diverse engineering orga-
nization that successfully developed a machine-learning
(ML) chip while meeting ambitious performance, power-
consumption, and development schedule goals. ML soft-
ware is a rather extreme software case because of the non-
deterministic nature of ML development. Experiences with
this unique software niche underscore the critical nature of
several of these five core principles.

The development team has always had two homes: San
Jose, California and Munich, Germany. The San Jose team
owns silicon and hardware design, firmware and software
development, and data capture and creation. The Munich
team develops ML-related software, including the compil-
er and the necessary software infrastructure ranging from
training datasets to compiled perception stacks.

This geographic separation amplifies the need for, and the
difficulties in making, the worlds of hardware and software
development mesh smoothly. It also makes the five core
principles of hardware/software co-design stand out in even
bolder relief.

Before discussing the five core principles of hardware/
software co-design, it’s important to discuss and understand
the two different engineering personas—hardware and soft-
ware—that underlie the team dynamics. In this case, the
personas of our development team are somewhat represen-
tative of hardware/software co-design teams everywhere.

Our typical silicon designer is an experienced engineer

who has successfully designed, tested, and brought up many
chips in their career. These engineers are acutely aware of
the “one shot” nature of their work. The consequences of
major hardware design errors are very costly and include
ballooning silicon design costs and loss of precious time to
additional design iterations. Such consequences, which can
kill a startup company, cause the hardware design team to
lean toward a conservative design approach.

Conversely, our typical ML designer has five years of ex-
perience or less and is accustomed to working in a very or-
ganic, explorative, and forgiving development environment.
Somehow, these two worlds—hardware and software—must
work together harmoniously to produce the desired product
on time and within budget.

In some fundamental ways, these two personas are quite
different, and it can be very difficult to mesh them into one
focused team. However, forging these two diverse engineer-
ing personas into one coherent engineering team that works
in synchronicity proved to be key to developing a new and
innovative piece of ML silicon in minimal time. The five
core principles guided the building and management of our
team:

Co-Design Core Principle #1: Determinism
The first core principle of hardware/software co-develop-

ment is determinism. One way to look at determinism is to
ask this question: How confident are you about the predict-
ability of a new task’s achievability (such as implementing a
new feature or a new circuit)?

Some engineering disciplines—including full-stack soft-
ware engineering, standard CMOS chip design, and PCB
design—operate with high levels of determinism. High
levels of determinism mean that when there’s a new engi-

Hardware/Software
Co-Design: The Five
Core Principles
Developing a solution across geographic time zones, cultures, and skillsets can be
difficult. Following these core principles to optimize hardware and software system
components can help maximize success from the outset.

☞LEARN MORE @ electronicdesign.com | 1

http://www.recogni.com
https://www.recogni.com/
https://www.electronicdesign.com/technologies/power/whitepaper/21129856/bridge-the-gap-between-hardware-and-software-in-powersupply-design-and-reliability
https://www.electronicdesign.com/technologies/power/whitepaper/21129856/bridge-the-gap-between-hardware-and-software-in-powersupply-design-and-reliability
https://www.electronicdesign.com/technologies/power/whitepaper/21129856/bridge-the-gap-between-hardware-and-software-in-powersupply-design-and-reliability
http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

neering challenge to tackle, an experienced engineer or en-
gineering manager can confidently predict a development
timeline, saying “I have done this before” or, at least, “A guy
on reddit has implemented something similar.”

High levels of determinism don’t imply that the task is
simple to achieve. The task may be very challenging and
might require a very skilled engineer to execute it. However,
high levels of determinism mean that the engineer or engi-
neering manager has a much clearer idea of how long a task
will require for completion. In other words, the task’s depen-
dencies and critical paths are well understood.

Conversely, some engineering disciplines (including ML
engineering) work day-to-day with a general feeling of non-
determinism. Even though a neural-network stack is tech-
nically deterministic—the same input always results in the
same output—the determinism of the final product is sub-
merged in the sheer, ungraspable complexity and arbitrary
behavior of ML networks. As a result, ML network develop-
ment requires a very iterative approach, not by choice but
out of necessity.

Friction can result when parts of a hardware/software
co-design team work on tasks with high determinism and
other parts of the team work on tasks with low determinism.
Overcoming this potential source of friction boils down to
empathic interaction. Both sides of the development team
need to have high degrees of empathy for the nature of the
other side’s work. Only then is highly synergistic and cohe-
sive hardware/software co-design possible, which directly
leads to core principle #2.

Co-Design Core Principle #2: Communication
Certainly, this isn’t the first article to state the obvious im-

portance of good communication among development team
members. However, when discussing hardware/software co-
design, we learned that a few specific aspects of team com-
munications should be emphasized.

The first such aspect is the need for over-communication.
When dealing with a group of people who think very dif-
ferently, repetition is extremely important. Repeat, repeat,
and repeat.

Just because someone mentioned the meaning of an acro-
nym three weeks ago in a standup meeting doesn’t guarantee
that team members in other disciplines will have internal-
ized the theoretical meaning and practical implications of
that acronym. Even a simple word like “segmentation” can
mean completely different things to a hardware chip design-
er versus an ML software engineer.

Context may eliminate confusion in most situations, but
it’s essential that members of closely intertwined, cross-dis-
ciplinary engineering teams take a step back and actively try
to put themselves in the position of their counterparts on
the team.

Yet another communications challenge is psychological
in nature. To some team members, repetition may appear
unnatural and almost condescending. Team members must
fight the urge to avoid what might seem like an implicit con-
frontation or insult. The end goal should always be clarity
and team members should be aware of, and make accom-
modations for, this when evaluating communications from
other team members.

Another critical communications element is treating in-
ternal documentation as a product. The need for complete
and clear documentation starts with the on-boarding of new
team members. Requiring clear internal documentation sets
the right tone at the very beginning and leads to a very co-
operative and highly intertwined way of working.

Rock-solid documentation from both sides of the hard-
ware/software co-development team must be easily accessi-
ble and easy to find. The guiding communications principle
here is: Treat all your colleagues like close customers. Serve
them; empathize with them; collaborate with them.

Co-Design Core Principle #3: Management
Many product development cycles contain critical paths

consisting of tasks from different disciplines that might not
synchronize well. This temporal mismatch poses a challenge.
For example, in Recogni’s experience, precisely time-lined
productization doesn’t pair well with ML’s unavoidable and
unpredictable need for iterative exploration and innovation.

It’s not uncommon for an ML project’s complexity to sud-
denly balloon from an easily-done-in-2-weeks, incremental,
model-retraining task to a new, from-scratch project involv-
ing numerous aspects that must be researched over a period
of months.

Solving this temporal mismatch requires two key ingre-
dients:

• �Project management must profoundly appreciate the
respective natures and challenges of all involved disci-
plines and a slightly more conservative project timeline
that accounts for significant critical-path disturbances.

• �Technical leads managing mixed teams that include ML
engineers need to understand that the devil lies in the
details and that baby steps and reflecting on the chal-
lenges which come with abstraction layers are crucial to
successful project completion.

Imagine, for instance, the silicon team wants to evaluate
the value of writing support for a new instruction to support
a new type of neural-network architecture. What should the
ML team do? Test the new architecture, of course. However,
in the ML world, things aren’t as simple or obvious as they
seem, initially.

For example, here’s a sequence of events that happened
to the Recogni development team. Discovery of a remotely
related paper with code suggested that a specific ML stack

☞LEARN MORE @ electronicdesign.com | 2

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

could benefit the target product. Even better, the target tech-
nology already under development could execute this new
ML stack efficiently and effectively. At this point, the new
ML stack from the paper looked like a natural fit.

However, one hyperparameter out of maybe more than
100 can completely ruin an ML model’s performance and
send the design team down a wrong path based on faulty
conclusions. A non-obvious change of one hyperparameter
value from 0.01 to 0.002 suddenly made the ML stack work,
seemingly by magic. Welcome to the unpredictable ML
world.

The solution to this challenge is to take baby steps, which
many people highly underestimate, especially those new to
ML or those who have spent their last several years in more
deterministic and humanly graspable engineering disci-
plines. ML development teams that start big right away can
drown in debugging. Most of the time, the quickest path to
ML success is to start small.

Co-Design Core Principle #4: Beware of Abstraction
Any serious product-level ML development environment

requires abstraction because it enables scalability. However,
abstraction comes with the often-underestimated risk of
wrongly implied automatism and genericness.

For example, the reason why the incorrectly set hyperpa-
rameter in Principle #3 might have been set to 0.01 could
simply be because a module that’s been part of the environ-
ment for a long time led developers to assume that the hy-
perparameter “just works” with that setting. After all, that
setting literally did work for months or years, so it’s not a
bad assumption.

However, the long-term and successful use of this setting
allowed the awareness of the ML model’s significant sen-
sitivity to that hyperparameter to fade away over time. It’s
economically unfeasible to test every ML hyperparameter
setting every time you want to develop something new.

Constant and persistent reflection on the adaptability level
for all abstraction layers, preferably supported by a range of
randomized, recurrent, and automated end-to-end unit tests,
helps to minimize the risks associated with abstraction.

Co-Design Core Principle #5: Scope and Focus
There’s a good reason why we consciously and intention-

ally decided to create a company that builds end-to-end ref-
erence systems that span all aspects of a design from sensors
in the car, to self-captured data, chip design, neural-network
design, compiler tool chain, visualization, etc. This compre-
hensive scope enables our core teams to develop their re-
spective parts of the stack in the context of a complete, end-
to-end system instead of in isolation.

Due to the broad scope of the design, the team can ob-
serve the system-level implications of its work. However,

the broadened scope delivers additional benefit: It creates a
shared narrative for our teams internally. All hardware/soft-
ware development teams need this shared narrative.

For instance, integrating an image sensor as part of a ref-
erence platform should, in theory, not be a difficult require-
ment for a company that’s developing an ML processing
chip.

For the hardware chip designers, the image sensor is a
piece of embedded electronics that they must physically and
logically interface with. For the ML perception engineer, the
sensor serves as the data source for the neural network’s in-
put layer instead of using synthetic data sets that can lead
to suboptimal designs. The physical sensor produces a real-
world dataset that serves as a basis for empathic interaction
between the hardware engineers and the ML developers.

Conclusion
These five core principles should be integrated into every

hardware/software development project. As we’ve discov-
ered at Recogni, they’re especially important in the world
of ML development. These core principles are designed to
emphasize communications and empathy throughout the
diverse development team, at the beginning of the project,
throughout the project, and continuing all the way to the
project’s end.

Adhering to these principles doesn’t guarantee success.
There’s lots of hard work between here and there. However,
adopting these principles and embracing them gives hard-
ware/software co-development teams a fighting chance to
reach the end goal in a timely manner.

Gilles Backhus has spent his career focusing on real-time
AI development, seeking to solve our world’s most important
technical challenges.

☞LEARN MORE @ electronicdesign.com | 3

http://?Code=UM_EDPDF
http://www.electronicdesign.com?code=UM_EDPDF

